
On hexahedral finite element HC8/27 in elasticity
D. Mijuca

Abstract A new three-dimensional multifield finite ele-
ment approach for analysis of isotropic and anisotropic
materials in linear elastostatics, derived from primal–
mixed variational formulation based on Hellinger-Reiss-
ner’s principle, is presented. The novel properties are
stress approximation by the continuous base functions,
introduction of stress constraints as essential boundary
conditions, and initial displacement and stress/strain field
capability. It will be shown that resulting hexahedral finite
element HC8/27 satisfies mathematical convergence
requirements, like consistency and stability, even when it
is rigorously slandered, distorted or used for the nearly
incompressible materials. In order to minimise accuracy
error and enable introductions of displacement and stress
constraints, the tensorial character of the present finite
element equations is fully respected. The proposed finite
element is subjected to the number of standard patho-
logical tests in order to test convergence of the results.

Keywords Finite elements, 3D problem, Multifield,
Reliability, Elasticity, Geometric invariance

1
Introduction
The main objective of the present investigation is to
develop a new hexahedral (brick) finite element that can
reliably approximate behaviour of solid bodies of arbitrary
geometry and material characteristics. The main motive is
found in the possible need for the hexahedral finite ele-
ments that can reliably and simultaneously approximate
displacements and stresses, even in the analysis of thin and
thick solid bodies under the limit conditions. Further, the
motive is also found in the known problem of connecting
the finite elements of different dimensionality, i.e. when a
model problem has geometrical transitions from solid to

thick or thin. Consequently, present goal is to present
hexahedral finite element that can approximate without
locking solid body of arbitrary shape, of isotropic, ortho-
tropic or anisotropic material, which is based on finite
element approach that give us opportunity to introduce
initial stress and/or strains.

For that purpose, let us remind that there are single and
multifield finite element approaches, based on the canon-
ical functional in the linear elastostatics. The most basic
single field finite element approach in mechanics of solid
body is based on the minimisation of the total potential
energy functional. It is called displacement finite element
method also, because displacement is only one master
(primal) variable. It results with system matrix, which is
positive definite, symmetric and sparse, thus enable us to
use a number of efficient open codes for the solution of
resulting system of linear equations. Further, it is easy to
construct finite elements that satisfy mathematical con-
vergence requirements – consistency and stability. How-
ever, it exhibits pathology in several limiting situations [1],
as shear locking when low order elements are used,
presence of spurious or kinematic modes (extra zero
eigenvalues of system matrix) when selectively reduced
integration is used, locking behaviour in problems
involving internal constraints (e.g. incompressibility), as
well as the finite element sensitivity to mesh distortion. In
addition, stresses are calculated a posteriori, by differen-
tiation over the finite element level, which resulting in
unrealistic discontinuous stress picture with loss of accu-
racy. In addition, if for some reason we want to analyse
thin solid bodies with solid finite elements based on this
approach, it is usually not possible because of the locking
effects.

On the other hand, a multifield method in computa-
tional mechanics is defined as one that has more than one
primal (fundamental, master) field. If all fields of variables
are of the same dimensionality the resulting multifield
approach is called mixed, otherwise it is called hybrid.

The most frequent motivation for the use of mixed finite
element methods is their robustness in the presence of
above-mentioned limiting situations [1]. Nevertheless,
from the reason that one has to deal with at least two
fundamental variables, the overall stability of mixed
approaches in elasticity is not easy to achieve [2, 3]. More
clearly, in the elasticity, the first stability condition
requires a large displacement approximation space in
accordance to the stress approximation space, while the
second stability condition requires a large stress approxi-
mation space in accordance to the one of the displacement.
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Obviously, these two conditions are in contradiction.
Consequently, the well balance between the approximation
spaces of these two fundamental variables must be found
in order to avoid instabilities [1, 2].

Nevertheless, there is a common opinion [1] that mixed
methods have some serious drawbacks, like much more
degrees of freedom than primal ones, indefinite system
matrix, and spurious oscillations of dual variables in the
presence of singularities. Further, some authors [2] com-
ment: ‘‘. . .The use of C0 discretization for the stress field
should be avoided. The main reason for this is the diffi-
culty in the numerical solution of the linear system of
equations. . .’’.

The two most exploited multifield mixed variational
formulations in the elastostatics are Hellinger-Reissner
(displacements and stresses) [1] and Hu-Washizu (dis-
placements, strains and stresses) formulations [4]. The
Hellinger-Reissner functional is based on the comple-
mentary energy function, in which the constitutive laws
need to be modified when the elements are used for non-
linear materials. On the other hand, the Hu-Washizu
functional is formulated in terms of strain energy function,
thus making it more attractive for non-linear materials.

Another type of multifield variational principles are
hybrid [5], where master fields are of different dimen-
sionality, for example, one master field is volume and the
other one is surface field. The main motive for their use is
the relaxing of continuity condition on some field of
interest to handle material interfaces, cracks or disloca-
tions, as well as better displacement and stress solution in
some limiting situations where single field approaches
tends to be overstiff, like in above-mentioned situations.

Although there are many successful finite elements on
the market, present investigation is oriented toward
development of the general three-dimensional mixed finite
element in elastostatics based on te Hellinger-Reissner’s
principle. It should be noted, that it is a continuation of
the work in the settings of membrane elastostatics [6],
where it was shown that present scheme is reliable, robust,
and has superior performance in accordance to the raw
displacement finite element method, on the fairly chosen
set of standard benchmark examples.

Thus, the main properties of the present hexahedral
finite element are:

1. stable and robust three-dimensional finite element HC8/
27, insensitive to distortion and aspect ratio of its
dimensions,

2. continuous displacement and stress fields, eliminating
the need for stress recovering methods,

3. low-order approximation of displacements,
4. flexible hierarchic approximation of stresses, utilising

from nine to twenty seven nodes per finite element,
depending of the smoothness and regularity of the
problem,

5. sparse indefinite symmetric system matrix,
6. calculations of displacements and stresses from the

same system of algebraic equations by simple Gaussian
elimination,

7. no spurious oscillations of stresses in the presence of
singularity,

8. treatment of displacement and stress constrains as
essential boundary conditions,

9. no numerical tricks or tune-ups, easy coding.

It should be noted that straightforward calculation of
stresses is a great advantage from accuracy point of view
[7] and avoidance of the stress recovery.

Nevertheless, in order to prevent occurring of
invariance error [8], the geometric invariance of
present governing equations is fully respected. In the
present contribution, the proposed scheme is tested by
the standard low and high order convergence tests,
while the analysis of its efficiency is left for the future
work.

2
Mixed problem
We will start from the primal-mixed weak form of the
geometrically linear elastostatics field equations based on
the Hellinger-Reissner’s principle [1, 9, 10], that states:

Find fu;Tg 2 H1ðXÞn � L2ðXÞn�n
sym such that

ujoXu
¼ w and :Z

X

ðAT : S� S : ru�rv : TÞdX

ð1Þ
¼ �

Z

X

v � f dX�
Z

oXt

v � p doX

for all fv; Sg 2 H1ðXÞn � L2ðXÞn�n
sym

such that vjoXt
¼ 0 :

In the above formulation, u is the displacement field, T
is the stress field, f is the vector of body forces and p is the
vector of boundary tractions, w is the vector of prescribed
displacements, while A is fourth order compliance tensor.
Further, X � Rn, n ¼ 1; 2; 3 in an open bounded domain
of the elastic body, where n is the number of spatial
dimensions considered. Hence, n is the unit normal vector
to the boundary oX, while oXu and oXt are the portions of
oX where the displacements or stresses are prescribed,
respectively. The fu;Tg and fv; Sg are pairs of trial and
test displacement and stress functions, respectively. As it
could be seen, the stress functions are from discontinuous
subspaces L2ðXÞn�n

sym , as in the case of the classical dis-
placement method approach (see [1]). However, if there is
no singularity or abrupt material change in the region of
the model problem, it is a discrepancy from the reality
which usually results in the lost of accuracy.

Accordingly, our present goal is to achieve full (three-
dimensional) stress continuity. So, trial and test stress
approximation functions are chosen from smaller but
continuous finite element sub-space H1ðXÞn�n

sym ; the space
of all symmetric tensorfields that are square integrable and
have square integrable gradients. It was already success-
fully used in [12] for linear triangles, and in [13] for
bilinear isoparametric quadrilaterals. In both cases,
numerical results have indicated high accuracy. The
problem of solvability of such configurations has been
elaborated in [14] by Zienkiewicz and Taylor et al. Further,
to increase accuracy and to provide proper modelling of



the planes of symmetry, modelling of stress constraints as
the essential boundary conditions was introduced in [15].
Moreover, stabilization of primal–mixed elements by full
or partial hierarchic interpolation of stresses one order
higher than displacements has been introduced in [16].

The detailed investigation of the present approach in
two-dimensional (membrane) elasticity has proved that
quadrilateral finite element QC4/9, with four corner dis-
placement and nine stress nodes (four corner, four mid-
dle-sided and one central bubble), is more efficient than
corresponding raw displacement method [7] and that it is
reliable [16]. Only recently, present approach was
extended to the three-dimensional case [17], where it has
been shown that lowest-order finite element HC8/9 (eight
displacement corner nodes, eight stress corner nodes and
one bubble stress node) of that scheme is consistent,
solvable, and satisfies the first stability condition.
However, it does not satisfy second stability condition
(inf–sup test), which was being expected because its
two-dimensional counterpart QC4/5 does not pass that
test [16], also.

2.1
Finite element spaces
Let Ch be the partitioning of the domain X into elements
Xi and let us define the finite element subspaces for the
displacement vector u, the stress tensor T and the appro-
priate weight functions, respectively as:

Uh ¼ fu 2 ðH1ÞnðXÞjujoXu
¼ w; ujXi

¼ UKðXiÞuK ;Xi 2 Chg;
Vh ¼ fv 2 ðH1ÞnðXÞjvjoXu

¼ 0; vjXi

¼ VKðXiÞvK ;Xi 2 Chg;
Th ¼ fT 2 ðH1Þn�nðXÞjT � njoXt

¼ p;TjXi

¼ TLðXiÞTL;Xi 2 Chg;
Sh ¼ fS 2 ðH1Þn�nðXÞjS � njoXt

¼ 0; SjoXi

¼ SLðXiÞSL;Xi 2 Chg :
In these expressions uK and TL are the nodal values of

the displacement vector u and stress tensor T respectively.
Accordingly, UK and TL are corresponding values of the
interpolation functions, connecting displacements and
stresses at an arbitrary point in Xi (the body of an ele-
ment), and the nodal values of these quantities. The
complete analogy holds for the displacement and stress
variations (weight functions) v and S, respectively.

To handle stress components adequately and conve-
niently, the boundary (interface) nodal coordinate surfaces
should be accommodated to coincide or at least to tangent
the local boundary surfaces and/or interfaces. In that case,
it will be possible to treat known stress constraints as
essential stress boundary conditions, also.

2.2
Numerical implementation
After discretization of the starting problem (2) by finite
element method, it has been shown in [13] that present

scheme can be written as the system of linear equations of
order n ¼ nu þ nt, where nu is the number of displace-
ment degrees of freedom, while nu is the number of stress
degrees of freedom:

Avv �Dvv

�DT
vv 0

� �
tv

uv

� �

¼
�Avp Dvp

DT
pv 0

" #
tp

up

� �
�

0

fp þ pp

" #
:

ð2Þ

In this expression, unknown (variable) and known (initial,
prescribed) values of the stresses and displacements,
denoted by the indices v and p respectively, are decom-
posed. The nodal stresses tLst and displacements uKq

components are consecutively ordered in the column
matrices t and u respectively. The homogeneous (zero) and
nonhomogenous (nonzero) essential boundary conditions
per displacements up and stresses tp are introduced as
contribution to the right-hand side of the expression (2).

The members of the matrices A and D, of the column
matrices f and p (discretized body and surface forces) in
(2), are respectively:

AKuvCst

¼
X

e

Z

Xi

XN
KSNga

ðKÞugb
ðKÞvAabcdgc

ðCÞsg
d
ðCÞtTLX

L
C dX ;

ð3Þ

D
Cq
Kuv ¼

X
e

Z

Xi

XN
KSNUK

a XC
Kga
ðKÞug

ðCÞq
ðKÞv dX ; ð4Þ

f Kq ¼
X

e

Z

Xi

gðKÞqa XK
MVMf a dX ; ð5Þ

pKq ¼
X

e

Z

oXit

gðKÞqa XK
MVMpa doX : ð6Þ

The use of indices is taken from [18]. So, in the above
expressions ziði; j; k; l ¼ 1; 2; 3Þ is the Cartesian coordinate
system of the whole model problem, that is global coor-
dinate system of the model. Further,
xðKÞnðm; n; p; q ¼ 1; 2; 3Þ and yðKÞsðr; s; t; u; v ¼ 1; 2; 3Þ are
displacement and stress coordinate systems at each global
node K, respectively, not necessarily of the same position
and kind. Possibility to choose different coordinate sys-
tems at the global nodes per displacements and stresses
will enable us to select proper positions of nodal coordi-
nate systems for introduction of stress and displacement
constraints.

The local natural (convective) coordinate systems per
finite elements are denoted by naða; b; c; d ¼ 1; 2; 3Þ.
While, gðKÞmn and gab are the components of the contra-
variant fundamental metric tensors, the first one with
respect to xðKÞn at global node K (i.e. K), and the second to
n natural coordinate system of a finite element. Further-
more, UK

a ¼ oUK=ona.
Also, Aabcd are the components of the elastic fourth

order compliance tensor. In the case of isotropic material,



in order to determine compliance matrix with six inde-
pendent components we will need to know Young’s
modulus and Poisson’s ratio, only. Further, in the case of
orthotropic material we will need to know Young’s mod-
ulus E1, E2 and E3 in each of three mutually perpendicular
directions called the principal directions, six Poisson’s
ratio m12, m13, m23, m21, m31, m32, as well as three shear moduli
G12, G13 and G23, from which we will calculate compliance
matrix. On the other hand, in the case of anisotropic
materials, in the most general case, we will need to know
21 independent coefficients of the compliance matrix.
Further, f a and pa are the body forces and boundary
tractions in natural coordinates of an element,
respectively.

Integration is performed over the domain Xi of each
element, or where the tractions are given over the part of
the boundary surface oXit , while summation is over all the
e elements of a system.

In the end, XK
K is a connectivity operator (see [18],

p. 26), which maps the set of global nodes K into the set of
local nodes K per elements, and vice versa. Next, the upper
case letters in parentheses give us information to which
node, local per element, or equivalently, global per model,
considered quantity is related. Let us explain the need for
the connectivity operator from the aspect of actual coding
of the present scheme. The assembling of all entries in (4)
is performed per elements ðeÞ and local nodes in these
elements ðKÞ, in the local natural coordinate systems ðnaÞ.
On the other hand, input quantities (boundary conditions,
external forces, etc.) are given per global coordinate sys-
tems in global nodes (xi – displacements and forces, yi –
stresses). Therefore, we need the connectivity operator

which will give us information to which element consid-
ered global node K belongs, and which local number it has
in that element. The transformations of the considered
tensorial quantity in that global node, from the coordinate
system in nodes (xi or yi) to natural local coordinate
systems ðnaÞ is done by the use of the Euclidian shifters
ðga
ðKÞuÞ. All entries in (2) are presently calculated by using a

3� 3� 3 Gaussian integration formula.
Hence, the coefficients of the fourth-order compliance

tensor Aabcd in the general three-dimensional analysis of
isotropic material are calculated by:

Aabcd ¼
1

2E
½ð1þ mÞðgcagdb þ gcbgdaÞ � 2mgabgcd� : ð7Þ

While, for orthotropic material we have compliance matrix
in form:

½A� ¼

1
E1

� m21

E2
� m31

E3
0 0 0

� m12

E1

1
E2

� m32

E3
0 0 0

� m13

E1
� m23

E2

1
E3

0 0 0

0 0 0 1
G12

0 0

0 0 0 0 1
G13

0

0 0 0 0 0 1
G23

2
6666666664

3
7777777775
; ð8Þ

The Euclidean shifting operators g
ðKÞm
ðLÞs , ga

ðLÞs and g
ðKÞq
b are,

respectively:

g
ðKÞm
ðLÞs ¼ dklg

ðKÞmn ozk

oxðKÞn
ozl

oyðLÞs
; ð9Þ

ga
ðLÞs ¼ dklg

ab ozk

onb

ozl

@yðLÞs
;

g
ðKÞq
b ¼ dklg

ðKÞqp ozk

onb

ozl

oxðKÞp
:

ð10Þ

For the reason that tensorial character is fully respected,
one can easily choose appropriate coordinate system at
each global node for the introductions of known stresses
and/or displacements, or interpretation of the results.

2.3
Some details on the solution procedure
For the sake of the better insight in the solution procedure,
the system matrix entries in (2) will be examined. For each
mutually interconnected (by the common element(s)) pair
of nodes L and M, or L and K, respectively, submatrices of
A and D have following structure, respectively:

½DKq
Lst� ¼

DK1
L11 DK2

L11 DK3
L11

DK1
L22 DK2

L22 DK3
L22

DK1
L33 DK2

L33 DK3
L33

DK1
L12 þ DK1

L21 DK2
L12 þ DK2

L21 DK3
L12 þ DK3

L21

DK1
L13 þ DK1

L31 DK2
L13 þ DK2

L31 DK3
L13 þ DK3

L31

DK1
L23 þ DK1

L32 DK2
L23 þ DK2

L32 DK3
L23 þ DK3

L32

2
6666664

3
7777775

ð12Þ
While, stress and displacement components are pres-

ently ordered in the following way
½tT � ¼ ½t11; t22; t33; t12; t13; t23� and ½uT � ¼ ½u1; u2; u3�,
respectively. So, vector of unknown values or vector of
prescribed (initial) values is
½t11; t22; t33; t12; t13; t23; u1; u2; u3�. In these expressions
indices 1, 2 and 3 correspond to the components of

ALM½ � ¼

AL11M11 AL11M22 AL11M33 AL11M12þAL11M21 AL11M13þAL11M31 AL11M23þAL11M32

AL22M11 AL22M22 AL22M33 AL22M12þAL22M21 AL22M13þAL22M31 AL22M23þAL22M32

AL33M11 AL33M22 AL33M33 AL33M12þAL33M21 AL33M13þAL33M31 AL33M23þAL33M32

AL12M11þAL21M11 AL12M22þAL21M22 AL12M33þAL21M33
AL12M12þAL12M21þ
AL21M12þAL21M21

AL12M13þAL12M31þ
AL21M13þAL21M31

AL12M23þAL12M32þ
AL21M23þAL21M32

AL13M11þAL31M11 AL13M22þAL31M22 AL13M33þAL31M33
AL13M12þAL13M21þ
AL31M12þAL31M21

AL13M13þAL13M31þ
AL31M13þAL31M31

AL13M23þAL13M32þ
AL31M23þAL31M32

AL23M11þAL32M11 AL23M22þAL32M22 AL23M33þAL32M33
AL23M12þAL23M21þ
AL32M12þAL32M21

AL23M13þAL23M31þ
AL32M13þAL32M31

AL23M23þAL23M32þ
AL32M23þAL32M32

2
666666666664

3
777777777775

ð11Þ



displacement vector at the node K, while the indices 11, 22,
33, 12, 13 and 23 correspond to the components of sym-
metric stress tensor at nodes L and/or K.

The first main programming step in the above problem
is an assembly procedure of the left and right sides of (2).
The second one is the solution procedure of the resulting
system (2). The most natural and the fastest way in the
assembly procedure is to loop through the elements, by
putting in connection pairs of nodes L and M. At the left
side of (2), the unconstrained degrees of freedom (com-
ponents tv and uv) connected with the current node L are
retained. At the right side, the terms connected with the
known components tp and up are situated. The rows and
columns connected with the components with zero tp and
up are neglected.

The matrix on the left side of (2) is indefinite, sym-
metric and sparse. Presently, for the solution the sym-
metric sparse Gaussian elimination procedure is used. It
should be noted that zeroes at the main diagonal of the
system matrix are not an obstacle, because triangulariza-
tion procedure fills these positions with nonzero values.

2.4
Finite element HC8/27
The finite element HC8/27 is shown in Fig. 1. Its acronym
is taken from [14], where the first letter H stands for
hexahedral element geometrical shape, while the letter C
indicates the use of continuous approximation functions.
The displacement nodes are denoted by spheres, while
stress nodes are denoted by tetrahedrons, as shown in
Fig. 1.

The displacement field is approximated by tre–linear
shape functions, connected to eight corner nodes num-
bered from 1–8. On the other hand, nodes from eight to
twenty-seven are used for the approximation of the stress
field. Beside eight basic stress corner nodes, stabilization
of finite element is achieved by full or partial hierarchic
interpolation of stresses one order higher than displace-
ments connected to the additional nineteen stress nodes.
Thus, twenty-seven stress nodes are used to accommodate
full triquadratic expansion in natural coordinates n, g and
f. From these, eight stress corner nodes are connected to
the tre-linear shape functions denoted from 1–8. Further,
eleven quadratic shape functions are connected to the
midpoints of the sides numbered from 9–20. Six

biquadratic stress shape functions are connected to each
face centre, numbered from 21–26, and one three-qua-
dratic shape function connected to the hexahedron centre
(bubble node) numbered by 27. Consequently, multi-field
combination of eight displacement and eight stress nodes
is called HC8/8. The same basic element with additional
one or nineteen stress nodes, is called HC8/9 or HC8/27,
respectively. Further, per each node there are three dis-
placement and six stress degrees of freedom. Conse-
quently, there are maximum 186 degrees of freedom per
one finite element (finite element HC8/27). In the case
when analysed model problem is compressible and/or
boundary conditions are smooth, we will use only 78
degrees of freedom (finite element HC8/9).

It should be noted, that from the point of view of actual
coding, the coarser finite elements HC8/8 and HC8/9 are
seen as finite element HC8/27, where degrees of freedom
connected to the unwanted nodes are neglected (set to
zero).

The element considered here can be in fact identified as
an application of the Taylor-Hood type element in elas-
ticity, for which Brezzi et al. [2] at p. 284 in example 3.3,
have said: ‘‘It is not known if this element is stable’’.

2.5
On the construction of solvable and stable configurations
For forming the stable primal–mixed system of algebraic
equations, the solvability and stability analyses (See
Sects. 3 and 4) are taken into account. If there are no
traction boundary conditions imposed (i.e. no essential
boundary conditions per stresses) isoparametric finite
element HC8/8 is used, which is sufficient to maintain the
solvability of a system (see Table 1).

On the other hand, when essential traction boundary
conditions are introduced, on the boundary and especially
in corner elements, mechanisms can develop. In that case,
it is necessary to add a central, bubble (HC8/9), node and
some or all additional 18 quadratic nodes (HC8/27), not
necessarily in all elements, to ensure solvability. Practi-
cally, the additional 1–18 second order stress nodes are
hierarchic, that is the local approximation functions con-
nected to these nodes are hierarchic. Nevertheless, any of
these nodes can be added or suppressed using the simple
technique equivalent to the definition of the boundary
conditions.

The FORTRAN program code upon the full configura-
tion of the finite element HC8/27 is written. However, if we
want to analyse our model problem with simpler finite
elements HC8/8 or HC8/9, we will simply set to zero all
degrees of freedom connected to the unwanted hierarchic
nodes.

Nevertheless, the results of inf–sup test (see Sect. 5)
show that solvable configurations are not automatically
stable. Further, more efficient solution procedure is
obtained when nested dissection [7, 19] ordering of nodes
is adopted.

3
Low order tests
In order to check necessary and sufficient conditions for
convergence, as well as to check capability to representFig. 1. Finite element HC8/27



rigid body modes and constant strain condition, the low
order tests are traditionally the first steps in the validation
process of any new finite element. In addition, some au-
thors considered these tests as tools for assessment of
robustness of finite element algorithms. In the present
paper the necessary [14] and sufficient conditions for
solvability [20, 21] tests, are considered.

3.1
Necessary conditions for solvability
It is considered that single finite element passes solvability
test, if the number of its stress degrees of freedom nt is
greater than number of displacement degrees of freedom
nu. This test is known [14] as single element patch test.

In the case of present finite element HC8/27 we have
nu ¼ 24 and nt ¼ 162. So evidently, it passes the present
test. In addition, its simpler configurations, HC8/8 and
HC8/9, pass the present test also, because n

HC8=8
t ¼ 48 and

n
HC8=9
t ¼ 54, that are again greater than the number of the

displacements degrees of freedom nu ¼ 24.

3.2
Sufficient conditions for solvability. Eigenvalue analysis
In order to check if one finite element is sensitive to the
locking phenomena, that is, to illustrate that element is
free of spurious zero-energy modes (mechanisms), an
eigenvalue analysis of single finite element is usually
performed [21]. This test is also known as sufficient
conditions for solvability test. It should be noted that one
finite element free of boundary conditions, passes
sufficient solvability test if the number of zero eigenvalues
of the relevant system matrix in Eq. (2) is equal to the

number of the rigid body modes. In the three-dimensional
case, that number is six. If it is greater than six, some
mechanisms are present and the problem is not solvable.
In that case, the finite element will exhibit an apparent
strain without any stress [20].

For the present finite element HC8/27, the number of
negative eigenvalues corresponds to the number of dis-
placement degrees of freedom ðnu ¼ 8� 3 ¼ 24Þ, while
the number of positive eigenvalues corresponds to the
number of stress degrees of freedom ðnt ¼ 27� 6 ¼ 162Þ.
In addition, for a locking free element, only one mode
corresponding to the dilatational mode should tend to-
ward infinity in the limit of incompressibility or extreme
aspect ratio. If any of additional modes tend toward
infinity, the element will exhibit volumetric locking.

The test was performed over the undistorted or dis-
torted one finite element configuration (see Fig. 2), where
Young’s modulus is E ¼ 1 and Poisson’s ratio is m ¼ 0:3 or
m ¼ 0:49999. No displacement or stress boundary condi-
tions were applied. The finite element H1/ME9 based on
the mixed-enhanced strain method with nine enhanced
modes [21] that passes present test in the nearly incom-
pressible case, was taken for comparison.

In the Table 1, calculated eigenvalues are sorted in
increasing order. All eigenvalues connected to the dis-
placement degrees of freedom are reported. On the other
hand, only the first and last eigenvalues connected to stress
degrees of freedom are reported here. For example, one
may see that finite element H1/ME9 has 24 eigenvalues
connected to displacement degrees of freedom, from
which six zero degrees of freedom are connected to rigid
body modes. On the other hand, finite element HC8/27 has

Table 1. Eigenvalues for different one finite element configurations

H1/ME9 HC8/8 HC8/9 HC8/9 HC8/27 HC8/27 HC8/27
Mode
(dof)

dof m = 0.49999
Undistorted

m = 0.3
Undistorted

m = 0.3
Undistorted

m = 0.49999
Undistorted

m = 0.3
Undistorted

m = 0.49999
Undistorted

m = 0.49999
Distorted

1 Displacement 1 )0.2266E+00 )0.2821E+00 )0.3262E+00 )0.4855E+00 )0.6490E+00 )0.7010E+00
2 0.3333E+00 )0.2266E+00 )0.2497E+00 )0.2307E+00 )0.3099E+00 )0.2773E+00 )0.3440E+00
3 0.3333E+00 )0.2266E+00 )0.2497E+00 )0.2307E+00 )0.3099E+00 )0.2773E+00 )0.3386E+00
4 0.3333E+00 )0.2262E+00 )0.2497E+00 )0.2307E+00 )0.3099E+00 )0.2773E+00 )0.2693E+00
5 0.3333E+00 )0.1816E+00 )0.2077E+00 )0.1952E+00 )0.2807E+00 )0.2545E+00 )0.2451E+00
6 0.3333E+00 )0.1816E+00 )0.2077E+00 )0.1952E+00 )0.2807E+00 )0.2545E+00 )0.2213E+00
7 0.3333E+00 )0.1211E+00 )0.1211E+00 )0.1155E+00 )0.1689E+00 )0.1614E+00 )0.1863E+00
8 0.3333E+00 )0.9266E)01 )0.9266E)01 )0.9500E)01 )0.1457E+00 )0.1614E+00 )0.1790E+00
9 0.3333E+00 )0.9266E)01 )0.9266E)01 )0.9500E)01 )0.1457E+00 )0.1614E+00 )0.1688E+00
10 0.2222E+00 )0.9266E)01 )0.9266E)01 )0.9500E)01 )0.1457E+00 )0.1557E+00 )0.1348E+00
11 0.1111E+00 )0.8553E)01 )0.8553E)01 )0.8174E)01 )0.1211E+00 )0.1120E+00 )0.1289E+00
12 0.1111E+00 )0.8553E)01 )0.8553E)01 )0.8174E)01 )0.1211E+00 )0.1120E+00 )0.1147E+00
13 0.1111E+00 )0.8553E)01 )0.8553E)01 )0.8174E)01 )0.1211E+00 )0.1120E+00 )0.1071E+00
14 0.5556E)01 )0.4522E)01 )0.4522E)01 )0.4167E)01 )0.5327E)01 )0.4759E)01 )0.5784E)01
15 0.5556E)01 )0.4522E)01 )0.4522E)01 )0.4167E)01 )0.5327E)01 )0.4759E)01 )0.5281E)01
16 0.5556E)01 )0.3669E)01 )0.3669E)01 )0.3604E)01 )0.4557E)01 )0.4504E)01 )0.4725E)01
17 0.5556E)01 )0.3669E)01 )0.3669E)01 )0.3604E)01 )0.4557E)01 )0.4504E)01 )0.4553E)01
18 0.5556E)01 )0.3669E)01 )0.3669E)01 )0.3604E)01 )0.4557E)01 )0.4504E)01 )0.4297E)01
19–24 zero 0 0 0 0 0 0 0
25 stress 0.1852E)02 0.1852E)02 0.9259E)07 0.3638E)03 0.1819E)08 0.1819E)08
26–71 – – – – – –
72 0.5516E)00 – – – – –
26–77 – – – – –
78 0.8740E+00 0.9517E+00 – – –
79–187 – – –
188 0.2808E+01 0.3161E+01 0.3317E+01



24 eigenvalues connected to displacement degrees of
freedom, from which 6 zero degrees of freedom are con-
nected to rigid body modes, and 162 positive eigenvalues
connected to stress degrees of freedom. Therefore, for that
element, all 18 negative eigenvalues connected to dis-
placement degrees of freedom are listed, 6 zero degrees of
freedom are shown in one raw, and finally from 162
eigenvalues connected to stress degrees of freedom, only
the first (minimum) and last (maximum) are shown.

We may see that present hexahedral finite elements
HC8/8, HC8/9 and HC8/27, pass the present test, regard-
less of the value of Poisson’s ratio or the aspect ratio of
theirs axial maximal dimensions.

4
The mathematical convergence requirements
As the finite element mesh is refined, the solution of dis-
crete problem should approach to the analytical solution
of the mathematical model, i.e. to converge. The conver-
gence requirements for shape functions of isoparametric
element can be grouped into three categories, that is:
completeness, compatibility and stability [1, 11]. Conse-
quently, we may say that consistency and stability imply
convergence.

Completeness criterion requires that elements must
have enough approximation power to capture the analyt-
ical solution in the limit of a mesh refinement process.
Therefore, the finite element approximation functions
must be of a certain polynomial order ensuring that all
integrals in the corresponding weak formulation are finite.
Specifically, if m is variational index calculated as the
highest spatial derivative order that appears in the energy
functional of the relevant boundary value problem, than
the element base approximation functions must represent
exactly all polynomial terms in order � m in element
coordinate system. A set of shape functions that satisfies
this condition is called m-complete.

Further, compatibility criterion requires that finite
element shape functions should provide displacement
continuity between elements, in order to provide that no
artificial material gaps will appear during the deformation.
As the mesh is refined, such gaps could multiply and may
absorb or release spurious energy. So, patch trial functions
must be Cm�1 continuous between interconnected

elements, and Cm piecewise differentiable inside each
element.

Nevertheless, completeness and compatibility are two
aspects of the so-called consistency condition between the
discrete and mathematical models. A finite element model
that passes both, completeness and continuity require-
ments, is called consistent.

Further, if the considered finite element is stable, the
non-physical zero-energy modes (kinematic modes) in
finite element model problem will be prevented. The overall
stability of mixed formulations based on Hellinger-Reiss-
ner’s principle, is provided if two necessary conditions
for stability are fulfilled i.e., the first condition represented
by the ellipticity on the kernel condition and second con-
dition represented by the inf-sup condition [1, 11].

It should be noted that satisfaction of the completeness
criterion is necessary for the convergence, while violating
other two criteria does necessary mean that solution will
not converge.

4.1
Consistency condition
Presently, variational indices for displacement variable
field and stress variable filed are both m ¼ 1. Further, in
the present formulation test and trial displacement
approximation functions are from the space H1ðXÞn; the
space of all vectorfields that are square integrable and have
square integrable gradients. Consequently, they are chosen
to have C0 continuity, represented by tre–linear polyno-
mial functions. Accordingly, the completeness and com-
patibility requirements for that field are satisfied in the
present case. Further, same conclusion is valid for the
stress field also. Although, from the reason that stress
derivatives do not appear in the present formulation, the
continuity requirement on the trial and test stress shape
functions may be relaxed to be C�1 (discontinuous)
between the elements and C0 inside, which will be
exploited in the future investigations to analyse singular-
ities and abrupt material changes.

4.2
First stability condition
The ellipticity on the kernel condition [1] is given by:

aðz; zÞ � ahkzk for all z 2 Zh;

Zh ¼ fz 2 Shjbðz; vÞ ¼ 0 for all m 2 Vhg ; ð13Þ
where Sh and Vh are stress and displacement test
approximation functions respectively. It should be noted
that presently, test and trial stress local approximation
functions are from continuous finite element subspaces
Sh � ðH1Þn�n. Therefore, the corresponding bilinear form
a in (13) is quadratic. In addition, in the physical sense it
represents the deformation energy that is positive definite
in linear elasticity. Consequently, form a is symmetric and
bounded, also.

On the other hand, the first stability condition could be
evaluated using the matrix notation, also. The first
equation in (2) will be well posed if:

sTAs � aksk2 : ð14Þ

Fig. 2. Undistorted and distorted FE configurations



Presently, the natural stress norm is also an energy norm,
thus:

sTAs

ksk2 ¼
sTAs

sTAs
¼ 1 ) a ¼ 1 > 0 ð15Þ

Hence, for the present formulation, the first stability
condition is satisfied a priori.

4.3
Second stability condition
For the presently investigated finite element, the second
stability condition is satisfied if value ch, following from
LBB (Ladyzhenskaya, Babuška, Brezzi) condition (see [5],
p. 76, Eq. (3.22)), remains bounded above zero for the
meshes of increasing density:

c � ch ¼ inf
v2H1ðnÞ

sup
S2H1ðn�nÞ

bðSh; vhÞ
kShkkvhk

; ð16Þ

where:

bðSh; vhÞ ¼
X

e

Z

Xi

Sh : rvh dXe ; ð17Þ

kShk2 ¼
X

e

Z

Xi

Sh : Sh dXe ; ð18Þ

kvhk2 ¼
X

e

Z

Xi

rvT
h : rvh dXe : ð19Þ

In addition, condition (16) ensures solvability and opti-
mality of the finite element solution [11]. It should be
emphasized also, that any loading does not enter the
present test.

Because verification of the condition like (16) involves
an infinite number of meshes, it can not be performed.
Therefore, numerical inf–sup [11] test should be per-
formed for a sequence of meshes of increasing refinement.
Consequently, in the present case, numerical inf–sup test is
represented by generalized eigenvalue problem, in matrix
notation given by:

DT
h A�1Dhx ¼ kKhx ; ð20Þ

where D and A are matrix entries in (2). Further, matrix
K is the stiffness matrix from the corresponding
displacement finite element method, where entries are
given by:

KKmCn ¼
X

e

XK
L

Z

Xi

gðKÞma UL
b CabcdUK

d gðCÞnc dXXC
K: ð21Þ

In the above expression, the fourth order elasticity tensor
Cabcd in general three-dimensional analysis of isotropic
materials is given by:

Cabcd ¼ Em
ð1þ mÞð1� 2mÞ gabgcd

þ E

2ð1þ mÞ ðg
acgbd þ gadgbcÞ : ð22Þ

The square root of the smallest eigenvalue of the problem
(20), that is

ffiffiffiffiffiffiffiffiffi
kmin

p
; is equal to the inf–sup value ch in (16).

If the inf–sup values, for chosen sequence of finite ele-
ment meshes, do not show decrease toward zero (meaning
that the kmin values stabilize at some positive level) it can
be said that inf–sup test is passed. It should be noted that
decreasing of the inf–sup values on log-log diagram would
be seen as curve with moderate or excessive slope. This
approach was already used in [16] for testing the stability
of quadrilateral finite elements QC4/5 and QC4/9, and in
[17] for testing the stability of the hexahedral finite
element HC8/9.

5
Inf–sup numerical test
In the present chapter, we will investigate if the present
finite element HC8/27 passes numerical inf–sup test (20).
It is suggested in [3, 11] to test the finite elements in
different scenarios, such as: distorted or irregular finite
element meshes, small thickness, bending and membrane
dominated situations, and increasing Poisson’s ratio
toward incompressibility.

The results are plotted in the form logðkminÞ ¼ f ð1=NÞ,
where N ¼ 1; . . . ; 8 is the number of elements per side,
while kmin is the minimal eigenvalue in (20), where results
for meshes of increasing refinement are plotted from right
to left.

5.1
Membrane dominated case
As an example of membrane dominated case, the cylinder
model problem with clamped edges is analysed [3]. The
cylinder radius is r ¼ 1, the full length is L ¼ 2. To explore
the sensitivity of the present hexahedral finite element
HC8/27 to the values of thickness t in radial direction, two
cases t ¼ 1=50 and t ¼ 1=100, are considered. The Young’s
modulus is E ¼ 1, and Poisson’s ratio is m ¼ 0:3.

Because of symmetry, only one eight of the starting
model problem, shown in Fig. 3, is considered. Further,
one layer of finite elements is placed along the thickness.
The finite element models for mesh indicator N ¼ 2; 4; 6; 8
are considered. Total number of degrees of freedom (dof)
per each of the mesh made from HC8/9 finite elements, is

Fig. 3. Clamped cylinder: undeformed configurations 8� 8� 1



dof ¼ 142; 470; 990; 1702, while for the HC8/27 meshes we
have dof ¼ 442; 1498; 3178; 5482.

From the Fig. 4, we may see that regardless of the
thickness, curves for the finite element HC8/9 have
excessive slope, so that element does not pass inf–sup test.
On the other hand, curves for finite element HC8/27 in
either case of thickness, do not show decrease toward zero
as the mesh is refined. Moreover, these curves are almost
identical. Therefore, we may conclude that finite element
HC8/27 passes inf–sup test in membrane dominated cases
regardless of the considered thickness.

5.2
Bending dominated case
In order to investigate if the present finite element passes
inf–sup test in the bending dominated situations [11], a
clamped thin square model problem under the transverse
uniform load q ¼ 1, side a ¼ 2 and thickness t ¼ 0:01, is
considered,. The Young’s modulus is E ¼ 1, and Poisson’s
ratio is m ¼ 0:3. Only a quarter of the plate is analysed due
to its overall symmetry, by the sequence (N � N � 1,
N ¼ 2; 4; 6; 8; 10) of undistorted meshes or the sequence of
the highly distorted meshes that are not similar to each
other. The stress boundary conditions are introduced as
essential, which means that stresses tzzjt¼0:01 ¼ �1 at the
top surface of the plate are prescribed. The highly dis-
torted finite element model 10� 10� 1, is shown in Fig. 5,
while other finite element meshes are shown in Fig. 6.

From the results shown in Fig. 6, it is evident that finite
element HC8/27 passes inf–sup test in the case of bending
dominated problems regardless of the level of distortion of

the finite element mesh, since minimal generalised eigen-
values of the numerical inf–sup test problem (20) stabilise
in the mesh refinement process. Therefore, we may say
that the present finite element is robust in accordance to
the level of the mesh distortion.

5.3
Near incompressibility case
On the model problem of the square block ða ¼ 2Þ under
tri-axial tension, we will examine if the present finite
element passes inf–sup test in the near incompressible
scenario. Only one-eight of the starting model can be
discretized due to the symmetry. Four finite element
configurations with the mesh indicator N ¼ 1; 2; 3; 4, are
considered. Both, the displacement and stress boundary
conditions are prescribed to simulate tri-axial tension,
expect for the case with Poisson’s ratio m ¼ 0:49, where
only displacements boundary conditions are prescribed.

From the Fig. 7, it may be seen that the smallest non-
zero eigenvalues stabilize after one-element configuration,
similar as in [3] for MITC finite element family. Therefore,
we may conclude that finite element HC8/27 passes inf–
sup test in compressible and nearly incompressible cases.

6
Numerical examples
In order to check the convergence of the present formula-
tion, the number of challenging benchmark tests were
performed, using the finite element HC8/9 in compressible

Fig. 4. Clamped cylinder: inf–sup values

Fig. 5. The plate bending model problem

Fig. 6. Clamped plate: inf–sup test

Fig. 7. Unit brick: inf–sup values



cases and HC8/27 in nearly incompressible case. The
considered models are isotropic or orthotropic, although
present formulation allows analysis of anisotropic materi-
als. In addition, present formulation allows introduction of
initial strains, beside before mentioned initial displace-
ments and initial stresses. Nevertheless, cases where
material is anisotropic and/or where initial strains are
prescribed, are left for the further report.

It should be emphasised that target results for the
popular plate/shell benchmarks tests, are usually obtained
by the some plate/shell theory based on dimensional
reduction in the direction normal to middle surface.
Therefore, the difference between results obtained by the
present full theory, in accordance to available target val-
ues, is expected. The visualisation of results is provided by
the Straus7 software package [22] or by the in-house
software package.

6.1
Model problem with singularity
One of the serious complaints to the mixed formulations is
that they result with unrealistic oscillation around
theoretical solution in the presence of the singularity
caused by the nonsmoothness of data (such as jump
boundary conditions or singular loads) or the
nonsmoothness of the solution domain (such as corners or
cracks). To examine sensitiveness of the present finite
element to the nonsmoothness of the solution domain, the
popular L-shaped model problem [23] shown in Fig. 8, is
considered.

Only a quarter of the present model problem is analysed
due to the symmetry. The stress distribution along the line
BC that contains stress singular corner point S, is examined.

The stress distribution of the stress component txx

along the line BC is shown in Fig. 9, where we may see that
approximation by the finite element HC8/9 results with
spurious stress oscillation. On the other hand, if we enrich
approximation by enforcing the all six stress degrees of
freedom at the mid-side (hierarchic) finite element nodes
along the physical boundaries BS and AS only, calculated
stresses are smooth. That case is denoted by the HC8/27,
although only some of its nodes are utilized. Therefore,
despite forced continuity of stress approximation
functions in singular point S, we obtain expected

non-oscillating stress distribution, for difference to the
other mixed schemes (see [23], p. 363).

6.2
Cylindrical shell (‘‘Scordelis-Lo’’ Roof)
A well known ‘‘Scordelis-Lo’’ Roof model problem shown
in Fig. 10, subjected to gravity loading [24], is analysed.
The specific weight is c ¼ 0:20626. The Young’s modulus
is E ¼ 4:32 � 108 and Poisson’s ratio is m ¼ 0. The cylin-
drical shell is simple supported on rigid diaphragms and
free on the other sides. The advantage of the present model
problem is that there are no singularities involved. There
are two different values reported in the literature, 0.3024
[25] and 0.3086 [24].

The convergence of the displacement at the midpoint D
on the free edge NA using HC8/9 finite element, is exam-
ined. The results were compared with finite element DSG4,
bilinear four-nodded finite element based on the Discrete
Shear Gap finite element method [25], which utilizes only
displacement and rotational degrees of freedom at the
nodes. It is wel-known for its explicit satisfaction of the
kinematic equation for the shear strains at discrete points
in order to effectively eliminate the parasitic shear strains.
However, it was primarily chosen because no additional
efforts have been made to improve its behavior, like in the
case of the present finite element HC8/9.

Fig. 8. L-shaped problem

Fig. 9. L-shaped finite element model: stress distribution on line
BC

Fig. 10. ‘‘Scordelis-Lo’’ roof model problem



Only one-quarter of the starting model is analysed due
to the symmetry. The own weight of the present shell is
simulated by the uniform pressure p ¼ �90. Displacement
and stress boundary conditions are applied as shown in
Fig. 10. The increasing sequence of HC8/9 finite element
meshes, are analysed.

The convergence of the target vertical displacements
uyðDupÞ, for the present scheme and DSG4 approach, is
shown in Fig. 11.

6.3
Clamped square plate
As a test in bending dominated situations, the clamped
square plate model problem, with edge length a ¼ 2 and
thickness t ¼ 0:01, subjected to the uniform pressure
q ¼ �100, is considered. The Young’s modulus is
E ¼ 1:7472 � 107, and Poisson’s ratio is m ¼ 0:3. The ana-
lytical solution for the maximal deflection at the plate
centre C calculated by the Kirchhoff’s plate theory is
w ¼ 1:26 [26].

Only a quarter of the plate, shown in Fig. 12, was
analysed due to the symmetry. The essential stress
boundary conditions tzzjz¼0:01 ¼ �100 are prescribed for
the nodes lying on the upper surface of the plate. Further,
clamped edges were simulated by zeroing degrees of
freedom connected to the displacement
ðux ¼ uy ¼ uz ¼ 0Þ and transversal shear stress compo-
nents ðtxz ¼ tyz ¼ 0Þ. This case, denoted as the Case A, is
shown in Fig. 12. If we want to simulate the plate theory,
the additional assumptions that all transversal shear stress

components (txz and tyz) can be neglected (set to zero)
must be utilised. That case is denoted as Case B.

The present model problem was discretized by the se-
quence of meshes with two layers of brick finite elements
HC8/9 per thickness, that is N � N � 2. Therefore, axial
dimension of the finite elements in the direction normal to
the middle of the plate plane will be ð1=100Þ=2 ¼ 0:005.
Consequently, in the case of the roughest ðN ¼ 8Þ and
finest finite element mesh ðN ¼ 40Þ, the ratio between
minimal and maximal axial dimension in the solid brick
finite element, will be r ¼ 0:125=0:005 ¼ 25 and
r ¼ 0:025=0:005 ¼ 5, respectively.

The convergence of the transversal displacements at the
plate centre for the cases A and B, is shown in Fig. 13.
From the numerical result obtained by the present method
in the case A, we may see that target results converge from
below to the solution that is a little bit lower than one
obtained by the Kirchhoff’s plate theory. On the other
hand, in the case B, where the assumptions of the plate
theory were respected as much as possible, the target re-
sults for the sequence of refined meshes instantly converge
to the solution which is a little bit less than one obtained
by the Kirchhoff’s plate theory. The possible explanation
for that phenomenon is given in the next numerical
example.

In Table 2, the absolute relative displacement error ðgÞ
in accordance to the target results, as well as the work of
external forces ðWÞ, for both analysed cases are given.

The convergence of stress component tzz at node A (see
Fig. 12), for both analysed cases, is shown in Fig. 14.

From the present example, we may draw the conclusion
that present approach is sensitive to the simulation of the
stress boundary conditions. Therefore, its proper
determination is of a great importance.

Fig. 11. ‘‘Scordelis-Lo’’ roof: maximal displacements

Fig. 12. Clamped plate finite element model – case A

Fig. 13. Clamped square plate: maximal deflection

Table 2. Convergence: displacement error and work

Model g (%) W

Case A Case B Case A Case B

8 40.5569 0.8249 10.14775 19.03642
10 22.1804 0.9085 13.71001 19.06954
16 4.9201 0.8971 17.86789 19.13062
24 1.5685 0.8111 18.91428 19.17450
40 0.7581 0.6971 19.19474 19.21678



6.4
Simply supported circular plate
A clamped circular plate [27] under uniform normal
pressure p ¼ 1 shown in Fig. 15, is analyzed. The radius
of the plate is r ¼ 5 and thickness of the plate is t ¼ 0:1.
The material is isotropic, modulus of elasticity is
E ¼ 1092000 and Poisson’s ratio is m ¼ 0:3. The plate
theory solution for the central displacement and maximal
radial stress component in the centre of the plate are
w ¼ �0:398137 and trr ¼ 3093:75 [26], respectively. The
model problem has two planes of symmetry. Therefore,
one-quarter is analysed, only. The resulting finite element
mesh is distorted.

The present model problem is discretized by the two
layers of brick finite elements HC8/9 per thickness, that is
N � N � 2. The essential boundary conditions per dis-
placements and stresses, for case A, are given in the
Fig. 15. Hence, we will also examine case B, where degrees
of freedom of transversal shear stress components are
inactive (set to zero), as in the case of plate theories.

For comparison, the results are compared with the low
order plate bending finite element with thickness change
and enhanced strains, proposed by Piltner and Joseph in
[27], which is derived from the three-dimensional varia-
tional formulation, where three-dimensional constitutive
equation for six stress components has not to be modified.
The considered two-dimensional meshes are discretized
with a same pattern as present are (see Fig. 15).

In Fig. 16 we may see that both analysed cases (Case A
and Case B), converge to the same value. Therefore, we
may draw the conclusion that success of the Case B is
mirage, from the reason that instant convergence is ob-
tained on the account of the unrealistic neglecting of the
transverse shear stress components. In other words, by
minimizing shear stress influence (case B) we have ‘‘soft-
ened’’ the finite element mesh, so it may instantly undergo
apparently higher deflections. This explains fast conver-
gence of the considered plate element, also.

Nevertheless, maximal deflections of the sequence of
finite element meshes approximated by the present finite
element converge to the value that is a little bit lower than
one obtained by the Kirchhoff’s plate theory.

The convergence of the maximal stress values trrðCÞ for
the cases A and B, where central node C belongs to the
lower surface of the considered model, is shown in Fig. 17.
The numerical solutions are compared with target results
obtained by the plate theory [26]. We may see that both

cases converge to the same value that is about 10% in error
to the theoretical result.

6.5
Twisted beam
The clamped thick twisted beam shown in Fig. 18, under
in-plane and out-of-plane unit loading at its free end [28],
is analysed. The dimensions of the untwisted beam are
12� 1:1� 0:32. The beam is gradually twisted, so that its
free end is rotated by 90� in accordance to its clamped end.
The material is isotropic, modulus of elasticity is
E ¼ 2:9 � 107 and Poisson’s ratio is m ¼ 0:22. The theoret-
ical solution for the maximal displacement at the free end
for the in-plane loading is uyðCÞ ¼ �5:426 � 10�3, and for
the out-of-plane loading is uxðCÞ ¼ �1:756 � 10�3:

The beam is discretized using the increasing sequence
of the meshes N � 4� 2, where N ¼ 12; 16; 96. Two cases

Fig. 14. Clamped square plate: maximal stress
Fig. 15. Circular plate: boundary conditions

Fig. 16. Circular plate: maximal deflection

Fig. 17. Circular plate: maximal stress



of boundary conditions per displacement and stresses are
considered. Thus, boundary conditions for Case A are
fz ¼ 0 : ux ¼ uy ¼ uz ¼ txy ¼ txz ¼ tyz ¼ 0g, and for case
B are fz ¼ 0 : ux ¼ uy ¼ uz ¼ txy ¼ txz ¼ tyz ¼ 0g and
fX [ oX : txz ¼ tyz ¼ 0g. The results are plotted in Figs. 19
and 20.

Further, the absolute relative displacement error (g) of
these solutions comparing to target one, as well as work of
external forces ðWÞ, are given in Tables 3 and 4.

The visualization of the deformed model configuration
and maximal stress component is given in Fig. 21.

From the results reported in Tables 3 and 4, we may see
that present approach is less than 1% in error in accor-
dance to the beam theory. Nevertheless, present author are
of opinion that full approximation of stresses is recom-

mended, regardless of little difference in accordance to the
theory solution.

6.6
Stretching of an orthotropic solid
A cube of side L ¼ 1 in subjected to distributed surface
loads, is shown in Fig. 22. The material is assumed to be
orthotropic and the material axes coincide with the global
ones. Material data are: Young’s moduli E1 ¼ 10 � 106psi,
E2 ¼ 20 � 106psi, E3 ¼ 40 � 106psi, shear moduli

Fig. 18. Twisted beam

Fig. 19. Twisted beam: in-plane shear load

Fig. 20. Twisted beam: out-of-plane shear load

Table 3. Twisted beam: convergence for the in-plane loading

In-plane
Model

g (%) W

Case A Case B Case A Case B

12 2.04 0.76705 2.6576E)3 2.6922E)3
24 0.89 0.59771 2.6889E)3 2.6968E)3
48 0.78 0.48749 2.6919E)3 2.6998E)3
96 0.75 0.41821 2.6927E)3 2.7017E)3

Table 4. Twisted beam: convergence for the out-of-plane loading

Out-of-plane
Model

g (%) W

Case A Case B Case A Case B

12 2.01 0.22722 8.5782E)4 8.7601E)4
24 0.77 0.35752 8.7124E)4 8.7486E)4
48 0.69 0.35985 8.7196E)4 8.7484E)4
96 0.68 0.33747 8.7202E)4 8.7504E)4

Fig. 21. Twisted beam out-of-plane loading: maximal stress
result

Fig. 22. Orthotropic solid: undeformed mesh



G12 ¼ G13 ¼ G23 ¼ 10 � 106psi and Poisson’s ratios
N12 ¼ 0:05, N23 ¼ 0:1, N31 ¼ 0:3, where N21 ¼ ðN12E2Þ=E1,
N32 ¼ ðN23E3Þ=E2 and N13 ¼ ðN31E1Þ=E3. The target values
are three displacements uðCÞ ¼ fux; uy; uzg components of
point C, that is uðCÞ ¼ f9; 9:5;�1:75g � 10�6in. As the
cube is under constant strain deformation, we expect exact
results even with only one finite element mesh. The results
obtained coincide with exact.

The visualization of displacement component uy 	 u2 is
shown in Fig. 23.

6.7
Nearly incompressible block under compression
In the present example, we will test whether present finite
element exhibits Poisson’s effect (volumetric locking) in
the limit of incompressibility allied to mesh distortion
[29]. Brick under compression p0 on the middle part of its
two opposite surfaces, is analysed. One octant of the sys-
tem is discretized due to the symmetry. Geometry, loading
and boundary conditions of the system are described in
Fig. 24, in which short line represents suppressed dis-
placement along that direction. The nodes on the top of
the structure are constrained in x and y direction. The
material parameters are l ¼ 80:194 N/mm2 and
k ¼ 400889:806 N/mm2. Consequently, modulus of elas-
ticity is E ¼ 240:56595979 N/mm2 and Poisson’s ratio is
m ¼ 0:499899987.

The deformed configuration of the considered 6� 6� 6
finite element HC8/27 mesh, superimposed with picture of
the stress component txx, shown in Fig. 25, reveals that
there is no spurious behaviour of displacement and
stresses when the finite element HC8/27 is used.

7
Conclusions
The three-dimensional multifield finite element approach
in elastostatics analysis of isotropic, orthotropic and
anisotropic materials, based on Hellinger-Reissner’s prin-
ciple with no dimensional reduction and numerical tune-
ups, for direct calculation of full stress (six independent
components of second order stress tensor) and displace-
ment (three components of displacement vector) fields, is
presented. It has two essential contributions in accordance
to the similar approaches, the stress field is approximated
by continuous base functions, and known stress

constraints may be treated as the essential boundary
conditions. In addition, there is possibility to apply initial
displacement and stress (or strain) field. It is proven that
proposed finite element HC8/27 is reliable, even in the
limit problems discretized by highly distorted meshes.
Consequently, it could be recommended for the use in the
analysis on non-smooth model problems of arbitrary
geometry in the compressible and nearly incompressible
limits. Accordingly, its restriction HC8/9, which does not
pass inf–sup test is suggested for the analysis of regular
model problems.

In order to avoid the geometrical invariance error and
to enable introduction of known displacement and stress
constraints and surface forces, in an adequate coordinate
systems, the underlying finite element scheme is coordi-
nate independent.

The satisfaction of convergence requirements of the
present finite element scheme makes it a promising field
for future research undertakings, including research in the
materially non-linear solid continua. In addition, capa-
bility to introduce initial strain due to, for example,
thermal effects makes the present approach applicable for
determination of thermal stresses, which is left for further
report.
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