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This paper presents a new reliable fully three-dimensional time efficient primal-mixed finite
element approach with continuous primal and dual variables in geometrically multiscale
thermoelasticity. The semi-coupling between thermal and mechanical physical fields is achieved
straightforwardly via essential boundary condition per stress, and without consistency error. The direct
sparse solver and matrix scaling routine are used for the solution of resulting large scale indefinite
systems of linear equations. It will be shown that present solid finite element HC8/27 passes the first
and the second stability condition (inf-sup test) for highly distorted finite elements with aspect ratio up
to 7 orders of magnitude, for both, compressible and nearly incompressible materials. A number of
pathological benchmark model problems, with material interfaces or coatings, with geometrical
scale resolutions up to 8 orders of magnitude and aspect ratio of finite elements up to 7 orders of
magnitude, are examined to test the robustness and execution times. It is shown that by rapid varying
of spatial scale over local heterogeneities, the singularity of stress is captured without oscillation. It is
shown that, if needed, present approach can simulate the simplified theories, as beam and plate
theories, if the same restrictions on the stress tensor components are imposed. The new definition of
multiscale reliability is given.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The growing interest in the multiscale analysis of structures
with complex micro-structural geometry and behavior, can
be observed. Consequently, the primary goal of the manuscript
is to present a systematic approach in semi-coupled thermo-
mechanical analysis at multiple spatial scales.

The new straightforward, reliable, coordinate independent and
time-efficient primal-mixed finite element numerical simulation
procedure for the geometrically multiscale heterogeneous solid body
model problems in unconditionally stable and consistent transient
thermo-mechanical analysis, where both, primal and dual variables
can be imposed as essential boundary condition, is presented.

The other state of the art procedures in coupling of various
physical processes over the temporal and spatial scales are
recently introduced, also. For example, a multiscale space-time
asymptotic homogenization procedure for analyzing multiple
physical processes interacting at multiple spatial and temporal
scales is developed and applied to the coupled thermo-viscoelas-
tic composites, is presented in [1]. It was shown that by rapidly
varying spatial and temporal scales, the oscillations induced by
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local heterogeneities at diverse time scales, can be captured.
Further, two-scale thermo-mechanical analysis framework for
heterogeneous solids based on a computational homogenization
technique where thermo-mechanical approaches at both scales
are treated consistently and linked by a rigorous scale bridging
procedure, in a nested finite element solution procedure with an
operator-split implementation, is presented in [2].

In addition, different finite element approaches are abundantly
used in structural mechanics in the past several decades. Never-
theless, when it is based on standard, one field, so-called primal
finite element approach it cannot be straightforwardly used in
analyses over the multiple spatial scales. Specifically, this
approaches are not stable [3] when finite elements are extremely
distorted, thin or nearly incompressible, where there are spurious
oscillations of stresses due to the volumetric locking. In addition,
if it is based on dimensional reduction [4] it suffers from hourglass
locking [5,6].

More, stress equilibrium is violated inside each finite element
because the stress is calculated a posteriori. Therefore, stresses are
discontinuous across elements, stresses are not in equilibrium
with the applied traction and there is not possibility to apply
stresses as essential boundary conditions. Further, in coupled
problems, as thermal and mechanical, we can have consistency
error [7] between resulting thermal and mechanical stresses.
These problems are only greater in multiscale analysis, due to the
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high scale resolution of significant digits in calculations. It is
recognized that mixed finite element approach, which have all
variables of interest as solution variables (and not just a one per
physical problem of interest) are less sensitive in the above-
mentioned pathological situations [8,9].

Nevertheless, mixed finite elements did not yet find wide
acceptance in solid mechanics, although it is proved in [10,11] that
primal-mixed finite element approach where all variables of
interest are continuous, is reliable. It was primarily due to the
misleading opinion that it requires much more execution time to
be solved because of the larger system matrix than in correspond-
ing primal approach. In addition, some authors [9] comment:
“...The use of C° discretization for the stress field should be
avoided. The main reason for this is the difficulty in the numerical
solution of the linear system of equations...”. Nevertheless, it was
shown [10,11] that it is possible to develop reliable primal-mixed
finite elements having C° discretization for the dual variables (e.g.
heat flux, stress), also. In addition, the present finite element
approach in combination with this sparse solver MA57 [12] and
matrix scaling routine MC64 [17], is efficient in time and storage
[13]. It is shown that it is at least two orders of magnitude faster
than previously used in-house solver based on simple Gaussian
elimination.

In the present paper we will show that unconditionally stable
transient heat transfer HCT/q [11] and mechanical HCu/t [10]
reliable primal-mixed finite element approaches, could be
straightforwardly semi-coupled via essential boundary condition
per stress variable in order to solve multiscale thermo mechanical
problems in multimaterial solid mechanics.

It will be shown that present finite element HC8/27 passes
second stability condition (inf-sup test) for aspect ratio up to 7
orders of magnitude, for regular or highly distorted finite element
meshes, in compressible and nearly incompressible materials.
That makes the present finite element suitable with bridging the
scales with simulation approaches on particle levels [14].

The essential contribution of the present research is that it
enables fast and reliable solution of fully three-dimensional
transient thermo-mechanical response of geometrically multiscale
multimaterial model problems, using small number of finite
elements for the complexity of the model problem.

We will use the next terminology in the present text.
Geometrical scale resolution stands for the ratio between maximal
axial dimension of the model problem and minimal axial dimension
of finite elements, while aspect ratio stands for the ratio between
maximal and minimal axial dimension of a finite element.

In addition, the new definition should be stated: Some
numerical approximation procedure is multiscale reliable if it is
reliable throughout all geometrical scale in which underlying physical
law is valid.

The behavior of the proposed primal-mixed approach, where
all variables of interest are taken to be continuous, will be
examined on the number of numerical examples in transient
thermo-mechanics multi-phased materials with material discon-
tinuities. Primarily, it will be tested if present approach is capable
to mimic the analytical solution obtained by dimensional
reduction theories, as beam, plate and shell theories, and how
the target solution is changed if there is no simplification of
geometry or stress tensor. Consequently, it will be shown that
there is inconsistency in results obtained by classical beam and
plate theories and present full theory approach, which can be
motive for the further experimental measurements. It can explain
reasons for premature collapse in building under fire, far before
design solutions obtained by dimensional reduction theories.
Nevertheless, it is presently confirmed that dimensional reduction
and neglecting of some stress components leads to substantial
underestimation of maximal thermal stresses.

Consequently, new target values for beam and plate-like
model problems obtained by the present approach without
simplifications will be proposed. More, it will be tested how
results are changed if the finite element mesh is substantially
degenerated.

In addition, it will be shown that by using one to several
micron thin layers of finite elements left and right of material
discontinuities, robustness and accuracy of the procedure is
retained, regardless of the local violation of discontinuity of the
some of the stress components on the material interface. In
addition, the use of the continuous functions for approximation of
all stress components enables natural continuity of stress field
over discontinuity-free regions of the body, which is not possible
in standard displacement-based finite element methods in which
a posteriori stress recovery methods should be utilized.

2. Field problems

We will start from the special primal-mixed weak form in
transient heat transfer [11]:
Find {T,q} e H' x H'" such that T|,o, =T and
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for all {0,Q} e H' x H'™. such that 0|0, = 0.

As an essential contribution of the present approach, the trial
and test shape functions for the heat flux variable are presently
chosen from continuous subspace H', instead from subspace L,.

The Backward Euler scheme is used for the time discretization,
where:

nT_n—lT

At (2)
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For solving the behavior of the solid body under mechanical
loading, Hellinger-Reissner’s principle [10] is used:
Find {u,t} € H'" x H'*" such that u|q, =w and

v.pdoQ. A3
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for all {v,s} e H'™ x H{jix" such that v|sq, =0.

It should be noted that in the original version of Hellinger-
Reissner’s principle [3,8] stresses are chosen from discontinuous
subspaces LZ1x".

In above expressions T, q, u and t are the temperature, heat
flux, displacement and stress trial variables, respectively, while, 0,
Q, v and s are their test variables, respectively. The quantity k is a
second order tensor of thermal conductivity. If the material is
homogeneous and isotropic, the tensor k will degenerate to
simple scalar value k, i.e. thermal conductivity. Further, p is the
material density, and c the specific heat, while f stands for the
internal heat source generated per unit volume.

The A is the fourth order compliance matrix tensor. The fis the
body force, and the p is the vector of the prescribed boundary
tractions. Hsl%” is the space of all symmetric tensorfields that are
square integrable and have square integrable gradients, while H'"
is the space of all vectors that are square integrable and have
square integrable gradients.

The displacements and stresses are chosen from continuous
subspaces, which is correct for discontinuity-free regions of solid
body. Nevertheless, on the surfaces of material discontinuities all
components of stresses are discontinuous except transversal
stress component. Violation of the discontinuity will be presently
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prevailed by placing micron thin layer of finite elements adjacent
to discontinuity surface.

It will be shown that essential contribution of the present
investigation is that calculated temperatures are introduced
directly in field Eq. (3), that is, without differentiation. It will be
done through essential boundary conditions per stresses. We can
see from (1) and (3) that temperatures and stresses are presently
approximated by the functions of the same polynomial degree. In
addition, constitutive equation between stress and thermal strain
presently does not include derivative of temperature. Therefore,
there will be no consistency error between calculated thermal and
stress deformation fields [15].

It should be noted that consistency error is a big shortcoming of
primal finite element approaches. In primal approaches poly-
nomial degree of thermal strains is lower than polynomial degree
of mechanical strains, if temperatures and displacements are
approximated by the functions of the same polynomial degree.

2.1. Introduction of prescribed thermal strains

In the case of traditional materials where there is no heat
production due to strain rate, thermal effects on a body are
limited to strains due to the temperature gradient, which are
autonomously determined and constitute only a datum for stress
analysis [16]. Therefore, strains are mechanical (e’;') or thermal
(e;), and additive in the linear case.

In primal finite element approaches, temperature enters
mechanical field equations (Ku=F) through force loading term f,
by differentiation of the thermal strains. Consequently, thermal
strains will be in one degree lower polynomial function space that
mechanical strains. That leads to the consistency error between
mechanical and thermal stresses [7,14], and spurious oscillations
of results, especially in the vicinity of singularity or high gradient
of heat flux. It can be avoided only if polynomial degree of
approximation function of displacement is one order higher than
for temperature.

On the other hand, in the present approach thermal strain
enters the mechanical formulation (3) as essential boundary
condition per stress, using constitutive equation. To be precise,
the corresponding prescribed thermal strains e} are calcu-
lated from prescribed temperatures T, using next constitutive
equation:

e’ =o(T,—T) “)

where « is second order tensor of thermal expansion coefficients
(scalar in the case of isotropic materials), while T; is the initial
temperature. The prescribed thermal stresses tf. are then simply
calculated from strains e; via constitutive relation:

=C: e 5)

where C is the elasticity matrix.

We can see from (1) and (3) that presently thermal stresses
and mechanical stresses are calculated in the subspaces of the
interpolation functions of the same degree without any loss in
accuracy. Therefore, we can say that semi-coupling of thermal
and mechanical physical problem is presently performed in the
consistent way.

2.2. Finite element equations

The present primal-mixed finite-element approaches in elas-
tostatics (HCu/t), and in transient heat (HCT/q), were introduced
in [10] and [11], respectively. It is proved that these procedures
are reliable [3,5], and thus not sensitive to locking [6,8].

The finite-element equation of the present transient heat
approach is given by [11]
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The finite-element equation of the present elastostatic approach
is given by [3]
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The above expressions should be evaluated for each free degree of
freedom (dof) connected to the pair of global nodes A and/or I" of
the finite-element mesh, where Qﬁl is the connectivity operator,
which maps the set of global nodes A into the set of local nodes N
defined on each element, and vice versa.

In (7) T" and q! are nodal values of the temperature scalar T
and flux vector q at local node L, respectively. Further, P, and V;
are corresponding values of the interpolation functions at local
node L, while Py 4 is its derivative in connective coordinates of an
element. More, p is the density, k;;! the inverse of the second
order conductivity tensor in connective coordinates of an
element, ¢ the specific heat, h. the convection coefficient, g, is
prescribed heat flux, s the heat source in the volume of an finite
element, T, the ambient temperature, At is increment of time,
and " 'Ty,, the temperature at node M in the previous time
increment n—1.

In (9) A is an operator connecting the fourth order compliance
tensor with the stress tensor, which is essentially the expression
for the complementary work done by the system. Finite element
base interpolation functions for approximations of displacement
and stress fields at local node L are denoted by S; and T;. Further,
f* and p® are the body forces and boundary tractions in natural
coordinates of an element, respectively.
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The transformations of the considered tensorial quantity in
that global node, from the coordinate system in nodes (x' or y') to
natural local coordinate systems (£9) is done by the use of the
Euclidian shifters (gf,,). All entries in (7) and (9) are presently
calculated by using a 3 x 3 x 3 Gaussian integration formula.

The system matrices in (6) and (8) are indefinite, sparse and
symmetric. The sparsity comes from intrinsic properties of finite-
element approximation functions which have local support only.
The storage requirements can be reduced by storing only the
upper triangle of the matrix because it is symmetric. It is further
reduced by storing only the nonzero entries. The pattern of the
matrix and the number of entries are direct functions of the type
of finite elements used for the mesh discretization of the model
problem and the FE node ordering routine. Elements with more
nodes per finite element give rise to denser matrices. The optimal
solution of the above system of linear equations, where criteria for
optimality are robustness, accuracy and execution time, is
investigated in detail in [13].

2.3. Finite element configurations

The different finite-element configurations for transient heat
[11] and elasticity [10] analyses are shown in Fig. 1. Each element
contains 8 or 20 local nodes for the approximation of primal
variable and from 9 to 27 nodes for the approximation of dual
variable. The finite-element subspaces for the approximation of
the dual variable are usually enriched by additional hierarchical
shape functions in order to increase stability. Let us recall that
primal variables are temperature and displacement, and that dual
variables are heat flux and stress.

The convergence of the finite-element procedure is governed by
the solvability and stability of the finite-element configurations used
[3]. If some finite element procedure satisfies completeness and
compatibility criterions and stability conditions [3,8], it is said that it
is reliable [5]. It was shown in [10] and [11] that present finite
element HC8/27 is reliable up to aspect ratio of 3 orders of magnitude.
In the present paper it will be numerically proven that it is reliable for
aspect ratio of finite elements up to 6 order of magnitude and scale
resolution of the model problem up to 7 orders of magnitude, even if
the mesh is highly distorted or material is incompressible. That makes
the present finite element suitable with bridging the scales with
simulation approaches on particle levels [14].

2.4. System matrix

The system matrices in (6) and (8) are sparse, symmetric and
indefinite [8]. The indefiniteness of system matrix impose the
crucial difficulty in solving saddle-point problem like this, which
posses both positive and negative eigenvalues. In addition,
present system matrices are far from being banded, so some
classical solution procedures, direct methods such as Cholesky

T HC8/27 = _
HCSIQ/p B/D W‘S’/D&’ -

- 5 % 1
( S) . { | p
r ‘ /ﬁ .‘; &
n.=8 n, =24 n.=8 n, =24
n,=27 n =54 n,=8l n =162
n=35 n=78 n=89 n=186

HC20/21 ,D

decomposition or iterative methods like conjugate gradients,
cannot be applied directly [3]. The remedy is to perform an
additional reordering to limit the amount of fill-in and operations.

Leading concepts in the development of efficient solution
algorithms is to take advantage of the presence of many zeros, and
to store and operate only with entries (nonzero system matrix terms).
During the elimination process, the crucial requirement is to maintain
sparsity in the factors in order to minimize the storage and work
required for factorization. It is also important to pay great attention to
the numerical stability of the factorization. The direct solver MA57
and matrix scaling routine MC64 [17] are presently used. The MA57 is
a sparse symmetric linear solver using a multifrontal approach with a
choice of ordering schemes. It solves both positive definite and
indefinite systems of equations. Like in most sparse direct solvers, the
algorithms are organized in three distinct computational phases:
analyze, factorize and solve. The more details on time efficiency of the
present approach can be found in [13].

2.5. The mathematical convergence requirements

As the finite element mesh is refined, the solution of discrete
problem should approach to the analytical solution of the
mathematical model, i.e. to converge. The convergence require-
ments for shape functions of isoparametric element can be
grouped into three categories, that is: completeness, compatibility
and stability [3,8]. Consistency and stability imply convergence. If
some finite element approach satisfies completeness and compat-
ibility criterions, it is said that it is consistent.

Completeness criterion requires that elements must have
enough approximation power to capture the analytical solution
in the limit of a mesh refinement process. That is, the finite
element approximation functions must be of a certain polynomial
order ensuring that all integrals in the corresponding weak
formulation are finite. Specifically, if m is variational index
calculated as the highest spatial derivative order that appears in
the energy functional of the relevant boundary value problem,
than the element base approximation functions must represent
exactly all polynomial terms in order <m in finite element
coordinate system. A set of shape functions that satisfies this
condition is called m-complete.

Further, compatibility criterion requires that finite element
shape functions should provide displacement continuity between
elements (to prevent artificial material gaps during the deforma-
tion). Consequently, trial functions must be C™~! continuous
between interconnected elements, and C™ piecewise differenti-
able inside each element.

In the present finite element approaches, given by (1) and (3),
all variable fields have variational indices m=1. On the other hand,
test and trial approximation functions are taken from the
continuous spaces (H!, H" or H'™"), the space of all vector fields
that are square integrable and have square integrable gradients.

e, e

W_

@ *

_&;
ny =20 n, =60 ny =20 n, = 60
n,=63 n =126 n,=81 n, =162
n=83 n=186 n=101 n=222

Fig. 1. The primal-mixed finite element family HC.
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Therefore, all integrals in the corresponding weak formulations
(1) and (3) are finite. Consequently, the completeness and
compatibility requirements are satisfied for both presently
considered physical problems. Accordingly, present finite element
approaches are consistent.

Further, if the stability conditions are satisfied, there will be no
non-physical zero-energy modes (kinematic modes). Therefore,
the low order test which checks for the zero energy modes, so-
called sufficient conditions for solvability (or Eigenvalue analysis)
is satisfied if the finite element is stable (see [10] for further
details). In Hellinger-Reissner’s principles, it is provided if two
necessary conditions for stability, are satisfied. The first stability
condition is represented by the ellipticity on the kernel condition.
The second stability condition is represented by the so-called inf-
sup condition (LBB condition) [18]. The analytical verification of
these conditions can be difficult [3].

Many mixed finite elements known in the literature utilize the
fact that the dual variable is required to have square integrable
divergence, but the entire gradient need not exist. That is, the dual
variable is sought in H4" not in the smaller space H'. Never-
theless, it introduces the artificial discontinuity of dual variable
(e.g. stress) in the absence of the material discontinuity.

However, the satisfaction of the inf-sup condition ensures
solvability and optimality of the finite element solution. There are
only several finite elements which satisfies this condition in the
known literature [18]. More, it is dependent of the number of
finite elements in the mesh (mesh size).

It is shown in [10,11] that present FE satisfies all these criteria
in geometrically non-multiscale analysis, for both, regular and
extremely distorted finite element meshes, and for compressible
and nearly incompressible materials. The first stability condition
is a priori satisfied for present FE formulation, and it is also mesh
size undependable.

If some finite element procedure is consistent and satisfies
stability conditions [3,8], it is said that it is reliable. In particular,
finite element is reliable if the accuracy of the finite element
solution does not drastically decrease when some geometric or
material properties are changed in the mathematical model for a
given finite element mesh [5].

Therefore, because present approaches satisfy first stability
condition regardless of the mesh size, we have to prove second
stability condition, only. The second stability condition is satisfied
if value y,, following from LBB (Ladyzhenskaya, Babuska, Brezzi)
condition (see [19], p. 76, Eq. (3.22)) remains bounded above zero
for the meshes of increasing density. Nevertheless, verification of
this condition involves an infinite number of meshes, and it
cannot be performed analytically. It is, rather, performed
numerically [19] for a limited sequence of meshes of increasing
refinement. Consequently, numerical inf-sup test is represented
by generalized eigenvalue problem, in matrix notation given by

D/A™'Dx = /Cx (10)

where D and A are matrix entries in (8). And matrix C is the
stiffness matrix from the corresponding displacement based
(primal) finite element method (see [10]). If the inf-sup values,
for chosen sequence of finite element meshes, do not show
decrease toward zero (meaning that the 7y=./Ay;, values
stabilize at some positive level) it can be said that inf-sup test is
passed. The results of the inf-sup test for the present finite
element configuration HC8/27 are given in Section 3.1.

3. Numerical examples

Several model problems from thermo-mechanics with geome-
trical scale resolution up to 8 orders of magnitude, and aspect ratio

up to 7 orders of magnitude, are presently investigated (for
terminology see Section 1). They are used to test reliability, time
efficiency and accuracy of the present primal-mixed finite
element approach HC8/27. The performance with respect to
scaling is highlighted. Model problems with high aspect ratio
investigated in Examples 3.1, 3.3, 3.4 and 3.5. Highly distorted
hexahedral finite elements, where hexahedra is degenerated
to tetrahedron or L like shape, are considered in Examples 3.1
and 3.2. Multimaterial model problems, as bimetallic strip and
thermally coated shaft, are analyzed in Examples 3.4 and 3.5. The
inf-sup test on multiscale regular, highly distorted, compressible
and incompressible unit brick, is performed in Example 3.1.

The results are, where appropriate, compared with primal
hexahedral finite element H8 and analytical solutions [20]. Finite
element H8 is based on the primal finite element approach,
namely, displacement finite element method with incompatible
displacement modes (so-called bubble modes) introduced into
the element [21], which are eventually eliminated from the
element stiffness matrix by the static condensation procedure. A
special integration scheme is used to ensure that H8 passes the
patch test, while stress field is obtained a posteriori and smoothed
by the local stress averaging.

The execution time efficiency of the present approach is
elaborated in Section 3.4.

3.1. Inf-sup test in multiscale analysis

The inf-sup test (second stability condition) of the present
finite element HC8/27 in the geometrically multiscale analysis is
performed on the unit brick model problem, for regular and
extremely distorted finite element meshes. The aspect ratio of
finite elements goes up to 6, while scale resolution of model
problem goes up to 7 orders of magnitude. The two cases of
materials are considered. The two model problems, of compres-
sible (v=0.3) and nearly incompressible (v = 0.49) materials, are
investigated. The Young’s modulus is E=1.

Several model problems of increasing refinement are consid-
ered. The mesh pattern along x, y and z axes is taken to be
2N x2x2, for N=1,2,3,4,6. Accordingly, the first model pro-
blem has two elements layers per x axis, which have length of
0.999999 and 0.000001, respectively. Therefore, in undistorted
mesh for the N=6, the minimal axial dimension of FE is
Rmin = 1.66 x 1077, The maximal axial dimension of the FE for
all problems is hpax=0.5, so the maximal aspect ratio is
hmax/Rmin =3 x 10° (i.e. 6 order of magnitude), while scale
resolution is 1/hyi, = 1.66 x 107 (i.e. 7 orders of magnitude).

For extremely distorted meshes, the midside points are moved
from M(x, 0.5.0.5) positions, to M(x, 0.7.0.7), and maximal aspect
ratio is even higher: max/Amin = 4.4 x 10°, while maximal inter-
nal angle is 157°, as shown in Fig. 2.

Three model problem cases are reported. The first case is for
compressible material and regular mesh, the second case is for
compressible material and extremely distorted mesh, and the
third case is for nearly incompressible material and extremely
distorted mesh. The results are plotted in Fig. 2, from right to left
for meshes of increasing refinement, in the form 10g(ymin)=f(1/N),
where yi. =+/Amin 1S the square root of minimal eigenvalue,
see (14).

We can see from Fig. 2, that inf-sup curves of finite element
HC8/27 do not show decrease toward zero regardless of aspect
ratio and mesh pattern N. They remain stabilized at some level.
Therefore, we may conclude that finite element HC8/27 passes
present inf-sup test for compressible and nearly incompressible
materials, regardless of level of mesh distortion, for aspect ratio
up to 4.4 x 10° (5 orders of magnitude). It should be noted that
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Fig. 2. Unit brick. Inf-sup stability test per multiscale aspect ratio. Fig. 3. Clamped plate. Stress convergence.
inf-sup test FE HC8/27 tests for the other model problems, with G’
different geometry, are satisfied also, and will be reported in the
next paper. L
Keeping in mind that it is already proven in [10] that present
finite element passes first stability condition (which a priori
satisfied), and that it satisfy completeness criterion and compat- G
ibility criterion, we may say that present finite element is reliable
under definition set in Section 1.
3.2. Clamped plate under sudden temperature change W C C

The motive for the present example is to check if present
approach is capable to mimic the analytical solution obtained by
plate theory, and also, how the target solution is changed if there
is no simplification imposed on stress tensor components.

The clamped isotropic rectangular plate with dimensions
8 x4 x 0.25|m] at reference temperature Tz =294.15K, is pre-
sently investigated. Its upper side is suddenly exposed to the
temperature T =350KQ, thus 6T /6z=55.85K. The plate is made
from concrete with compressive strength fc =40MPa. Young's
modulus E=34290MPa, and Poisson’s ratio v=0.2. The coeffi-
cient of thermal expansion o = 0.00001"/K.

Unconstrained plate would normally assume a spherical cur-
vature with radius

r=h/(VTw), an

where h is the distance between the hot and the cold face.
Nevertheless, if the edges are fixed, the plate will be held flat by
resulting uniform edge moments. The maximum bending stress is

% = VToE/(1-v), (12)

which is obtained by the modified Kirchhoff plate theory ([20], pp.
583, Case 9) by neglecting transversal normal and shear stress
components (t#?=t¥=t"*=0). In the present case analytical
solution is t** = —-23.93871.

Four finite element HC8/9 meshes with increasing refinement,
where N =2,4,6,8, are analyzed. The nodes at the clamped edges
have constrained displacements in all directions. In the first case
(CASE1) we will assume that t# = t** = t¥* = 0. In the second case
(CASE2) all 6 components of stresses will be solution variables. It
should be emphasized that stresses are singular at the corner

Fig. 4. Highly distorted finite elements.

nodes. Stress results obtained by present HC8/9 approach, at
upper midside node and upper midedge node (clamped edge), are
shown in Fig. 3, for both full and constrained stress tensor.

We can see from Fig. 4, that in CASE1 the analytical solution is
obtained for all considered mesh refinements. In addition, as
predicted by plate theory all nodes on the upper face of the model
has that same value for both in-plane stress components, t** and
tY. The stresses on the model down face are zero.

Further, in CASE2 we can see from Fig. 4 that at upper face
midside node M(0,0,0.25), stress t** converges to the slightly
greater value than predicted by plate theory. The in-plane normal
stress component ¢ is of similar value, while transversal normal
stress component t# converges to zero as expected. The
transversal shear stress components converge to zero also, as
expected. On the other hand, the situation is different for nodes at
the clamped edges.

More, the results for the upper face midedge node (0,0.2,0.25)
are shown in Fig. 4, also. We can see that singularity of stress t* is
captured so it has greater value than analytical one.

Therefore, we can see that classical plate theory is not capable
of capturing the stress singularity at the clamped edge, but give us
an accurate estimate of the stress at the interior points of thin
body, only.
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To conclude, present approach can give us analytical plate
theory solution if same simplification on stress tensor is assumed.
On the other hand, full theory gives us more physically mean-
ingful results, for example, with capturing the maximal stresses
on the physical boundaries over the fixed edges, while stress
converges to the analytical solution at interior nodes. It is in
agreement with singular nature of stresses on clamped edges.
Observed inconsistency in results between classical plate theory
and present full theory approach, is a good ground for the further
experimental measurements. Therefore, we can say that plate
theory is just a subset of the present one.

3.3. Clamped beam under sudden temperature change

The quadratic clamped beam is suddenly exposed on upper
face, from reference temperature Tz =294.15K to T =350K.
Young’s modulus and Poisson’s ratio are E=34290MPa and
v=0.2, respectively. The coefficient of thermal expansion is
o =0.00001"/K. The dimension of the bar is 12 x 1 x 1[m)], in x,
y and z axes direction, respectively. The beam is fully fixed on its
ends. Resulting uniform edge moments will keep the plate flat.
The maximum bending stress is t** = VT«E [20]. This formula is
obtained by modified simple beam theory in which it is assumed
that Y =t# =t¥ = t* =¥ = 0. In our case t** = —-19.15097 MPa.
The sequence of finite element meshes with pattern 12N x 2Nx
2N, where N =1, 2, 3,4, are considered. In this example stress is
singular at the physical boundaries of the clamped edges.

The first goal is to test if present fully 3D approach can
simulate the simple beam theory, that is, to obtain the analytical
solution of the simple beam theory. Second goal is to test the
robustness of present approach to high mesh distortion, scale
resolution and high aspect ratio of its finite elements. The third
goal is to see how the character of stress field is changed when full
theory (no simplification on geometry or stress tensor) is used,
instead of simplified one.

As in the present example, in the first case (CASE1) we will
assume that t#? =t** =9 =0. In the second case (CASE2) all 6

Table 1
Clamped beam under temperature gradient: regular FE HC8/9 mesh.

components of stresses will be solution variables. Nodes on the
clamped edges are fully fixed. The mesh pattern is given by
12N x 2N x 2N, for N=1,2,3, 4. Convergence of results per stress
component t* at characteristic nodes, upper corner C(011) and
midedge M(6,1,1) nodes, obtained by both considered cases, are
presented in Tables 1 and 2.

We can see from Table 1 that for the regular finite element
mesh in CASE1 we obtain the analytical solution irrespectively of
the mesh parameter N. On the other hand, in the CASE2, the
solutions at the midspan node M converge from below to the
analytical solution, while at the corner node that is on clamped
edge singular value of stress is reported.

Let us now investigate CASE2 for highly distorted and multi-
scale mesh in yOz planes (cross sections). Upper layer of finite
elements will be highly degenerated, as depicted by left and right
figures in Fig. 4. The thickness of the upper elements layer will
be 1 x10~®m. Consequently, the model problem will look like
in Fig. 5.

For highly distorted multiscale mesh the results are given in
Table 2. As for the regular mesh, the solutions for t* at the
midspan node M converge from below to the analytical solution,
while at the corner node that is on clamped edge singular value of
stress is reported.

Comparing the results in Tables 1 and 2, we can notice that
present approach is robust to mesh distortion. It was for expected
because we prove that present finite element passes inf-sup test
in similar model problem geometry (see Section 3.1).

Let us now investigate the distribution of the stress component
t** on the upper edge. One fourth of the model problem is
examined due to the symmetry. Finite element mesh (96+16) x
1 x 4 is considered. In order to diminish the effects of stress
singularity on the clamped edge, 16 finite element layers are put
over 1 um near it. Consequently, the maximal aspect ratio will be
almost 7 orders of magnitude. Temperature loading changes
through z direction only, so it is enough to have 1 finite element
along y direction. The finite element configurations HC8/9 and
HC8/27 are considered, without and with simplification on stress
tensor. The results are compared with analytical results and

Clamped beam loaded by transversal temperature gradient. Regular Mesh 12N x 2N x 2N. FE HC8/9. Analytical solution —19.15097.

t** at corner node C(0,1,1)

t* at midspan node M(6,1, 1)

N CASE 1 CASE 2 Relative error (%) CASE 1 CASE 2 Relative error (%)
1 —19.15097 —30.65553 60.07 —19.15097 —20.49503 7.02
2 —19.15097 —36.10571 88.53 —19.15097 —20.08562 4.88
3 —19.15097 —43.16012 125.37 —19.15097 —20.00783 4.47
4 —19.15097 —49.24679 157.15 —19.15097 —19.71298 2.93

Stress t** convergence.

Table 2

Clamped beam under temperature gradient: highly distorted multiscale FE HC8/9 mesh.

Clamped beam loaded by temperature gradient. Case 2. Highly distorted multiscale FE HC8/9.mesh, 12N x 2N x 2N.

Analytical solution —19.15097.

t* at corner node C(0,1,1)

t** t midspan node M(6,1,1)

N Maximal aspect ratio CASE 2 Relative error (%) CASE 2 Relative error (%)
2 500000 —34.06640 77.88 —20.86432 8.95
3 333333 —40.18221 109.82 —20.37795 6.41
4 250000 —46.22371 141.36 —20.12185 5.07

Maximal aspect ratio. Stress t** convergence. Relative error.
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results obtained by finite element H8 based on assumed
displacement finite element method with a posteriori local stress
averaging (primal approach). The aspect ratios of the model
problem and results are shown in Fig. 6.

We can see from Fig. 6, that present finite element HC8/9 with
neglecting all stress components except t*, as in beam theory,
give us analytical results of the beam theory. Further, finite
element HC8/9 with full stress tensor approximation captures the
stress singularity with local stress concentration, but afterwards

has uniform value slightly about 4.8% greater than analytical.
More, finite element HC8/27 has similar character of distribution,
but has 7.9% greater stresses at interior points. Primal finite
element H8 has similar behaviour but interior stresses 1.8%
different from analytical.

Let us emphasize that similar difference in analytical results
and experiment, is reported also in [22] (Fig. 9 and 15). It is
shown there that difference in measured and analytical results
goes up to 17%.

3.4. Long steel coated shaft

The simulation of the coated materials is of particular interest
to industry in order to control the level of the interfacial stresses
on the surfaces of material discontinuities [23]. Therefore, a
hollow shaft covered with microsized coating layer for mechan-
ical and thermal protection, shown in Fig. 7, is presently
examined.

The material properties are given in Table 3. The inner and
outer radii of the shaft are 0.005 and 0.1 m, respectively. The
reference temperature is Tg = 1273 K. The prescribed tempera-
tures on inner and outer surfaces are T; =773 K and T, =1273K,
respectively.

The coating consists of a bond and ceramic layers of the equal
size. In order to test the robustness of present finite element to
high distortion, the thickness of the coating (bond and ceramic) is
gradually decreased from h = 1072 m to h = 10~ m. Consequently,
all stress tensor components, except radial, will be discontinuous
on material interfaces and will differ significantly from each other
due to the large difference in physical properties of the bonded
materials.

The analytical solution is obtained by modified plane strain
plate theory [23]. It is presently assumed that height off the shaft
is 0.1 m. We will investigate the convergence of the temperature
and radial stress component on the interface L2, between bond
and ceramics. The temperature distribution is calculated by
present finite element thermal approach (6), after which thermal
stresses are calculated by (8) without consistency error [15]
(see Section 2.1).

The sequence of five model problems with decreasing coating
thickness h=10"", where N=2,3,4,5,6, are analyzed. Model
problem is plain strain, so it is enough to set only one
finite-element layer along height. One-quarter of the model
problem is analyzed due to the symmetry. Bond and ceramic
are discretized by 3 layers of finite elements along the radius in all
meshes. Consequently, maximum finite element aspect ratio of
600000 will be in the model problem with coating thickness
h=10"°m.

The results obtained by present finite element HC8/9 and
classical plane boundary element method (CBEM) [22] per
temperature and stress at interface L2, are shown in Figs. 7
and 8 respectively.

We may see that approach CBEM exhibits spurious oscillation
of results. On the other side, present approach is invariant to the
size of the coating thickness.

Let us now investigate the distribution of stress components
t*, %, t# and t* in the radial direction (over x-coordinate) in the
region over the surfaces of material discontinuities, L1 and L2. The
model problem with thickness of the coating h=10"%m, is
examined. The results are shown in Fig. 9. It can be seen that
there are no spurious oscillations of stresses near the material
discontinuities.

Let us now briefly analyze the time efficiency of the present
approach (see Section 2.4). The more details can be found in [13].
The execution time for three distinct phases in the solution
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Table 3
Long steel coated shaft.

Long steel coated shaft-material properties

Modulus Poisson’s ratio Thermal expansion coefficient Density Thermal conductivity
E x 10* [MPa] v o x 107°[/C] p x 10° [kg] k[W/m?2(]

Ceramic 1.0 0.25 1.0 4.0 1

Bond 13.7 0.27 1.51 4.0 25

Steel 21.0 0.30 2.0 7.98 25

Material properties.
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process, storage requirements and backward error for in-house
direct Gaussian solver and MA57 solver with scaling routine
MC64, are reported in Table 4. Numerical experiments were
conducted on a PC Pentium(R) D CPU 2.8 GHz with 3.25 GB of RAM
with Physical Address Extension running under the operating
system Microsoft Windows XP Professional Version 2002 Service
Pack 2, double precision (64-bit) reals were used, CPU times are
given in seconds.

We can see from results reported in Table 5 that scaling the
system matrix prior to the factorization using MC64scaling
routines considerably improves the execution time. In addition,
the storage requirements and number of operations are far
smaller. MA57 without scaling was not able to solve some
model problems, because the factorization fails due to insufficient

storage. Therefore, the conclusion is that scaling generally
decreases the storage requirements, decrease the solution time,
and enables the solution of systems with much more degrees of
freedom. As an interesting aside to this set of problems, the given
matrix has many entries of very small size (around 102°).
However, these are significant numbers inasmuch if they are
treated as zero, it is not possible to solve the resulting systems
because the matrix is singular.

3.5. Bimetallic strip

The motive for present example is to investigate how
physical singularity of stresses on the clamped edge and material
interface influence the behavior of the present approach using
finite elements HC8/9, HC8/27 and HC20/21. The results are
compared with results obtained by finite elements H8 and H20
based on assumed displacement based (primal) approach where
stresses are calculated a posteriori. It should be noted that these
primal finite elements are not designed to be used in spatially
multiscale situations because of the hourglass locking [3]. Never-
theless, it will help to emphasize the robustness of present
approach.

Bimetallic strips are made of two materials having different
coefficients of expansion. It causes the strip to change its
curvature when subjected to a change in temperature [20]. The
cantilever bimetallic strip of length =10, width w=0.1, and
thickness h=0.1, is analyzed. The beam is stress free at Tz =70
and subjected to a uniform temperature To = 170. Both materials
has modulus of elasticity E=3 x 10’ MPa and Poisson’s ratio
v=0.3. The difference is in coefficients of thermal expansion,
o =1x 107 and oy =2 x 107>, for the upper and lower material,
respectively. All components of stresses except transversal will be
singular at the material interface. In addition, clamped edges are
lines of discontinuity.

We will assume that the beam longitudinal axe coincide
with x direction. Nodes on the clamped edge have sup-
pressed displacements. Analytical solutions, obtained by modi-
fied simple beam theory (see [20], page 114) is t* = -7500,
for the top surface, and maximal deflection is u, =0.75. Only
one half of the model problem will be analyzed due to the
symmetry.

In order to localize the stress singularity on the material
interface, we will place very thin layer of finite elements on the
both side of the material interface, that is, one layer on each side,
with thickness h, =0.0001 m. Further, we will localize effect of
stress singularity on the clamped edge by placing 1/N microsized
finite elements near the clamped edge with thickness h;=
0.000001 m/N. Therefore, the mesh pattern is given by (10N+N) x
1x(2+1+1+2), where N=2,4,8,16.

Consequently, maximal scale resolution, that is, ratio of maximal
axial dimension of the model problem (IMde! — 10) and minimal axial

max

dimension of finite elements (hE = 0.000001/ 16 =6.25 x 107%),

min
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Table 4
Coated cylindrical shaft.

Coated cylindrical shaft-execution time and storage requirements

FE N NE Time Backward error
Analyze Factorize Solve Total
in-house HC8/9 5776 14.31 0.75 15.06
HC20/21 16500 1810.17 4.89 1815.06
MA57+MC64 HC8/9 5776 280056 0.03 0.50 0.01 0.54 0.8E—12
HC20/21 16500 1829790 0.17 12.28 0.05 12.50 0.1E—10
HC8/27 18634 1961070 0.19 4.05 0.06 4.30 0.2E—10
HC20/27 22122 2785700 0.27 11.59 0.08 11.94 0.3E-10
Execution time and storage requirements.
Table 5
Cantilever bimetallic strip.
Convergence of maximal displacement u*
Mesh pattern (10N+N) x 1 x 4 for N=2,4,8,16
Thickness of the bond layers h, =0.0001 m
Thickness of the layers near the clamped edge h. = 0.000001 m/N
N NEL Scale resolution [madel /hFE Aspect ratio HC8/9 HC20/21 HC8/27 H8 H20
2 88 2E+07 1E+05 0.6649954 0.7500676 0.5861077 0.7500546 0.7501663
4 176 4E+07 2E+05 0.7311053 0.7500674 0.7131315 0.7500688 0.7499819
8 352 8E+07 4E+05 0.7464689 0.7500664 0.7430614 0.7500615 0.7501227
16 704 2E+08 8E+05 0.7495121 0.7500637 0.7490083 0.7500665 0.7505277

Uy = 0.75; £ = 7500

Convergence of maximal displacement u”.

will be Imodel/hFE — 1.6 x 10° (up to 8 orders of magnitude).
Maximal aspect ratio of finite elements in the present model problem
will be hmax /hmin = 8 x 10°, that is almost 6 orders of magnitude.

The convergences of displacements at the beam tip as the
mesh is refined for finite elements HC8/9, HC8/27 and HC20/21,
are given in Table 5.

It can be seen from Table 5 that tip displacement obtained by
finite elements HC8/9, HC8/27 and HC20/21, uniformly converges
to the analytical displacement, while raw finite elements H8 and
H20 oscillates around analytical solution.

Let us now investigate distribution of target stress ¥
along the upper edge (x,0.05,0.05). The results for linear finite
elements: primal H8 and primal-mixed HC8/27, are shown in
Fig. 10.

We can see that present finite element configuration HC8/27 does
not exhibit spurious oscillations. Let us recall that this finite element
passes inf-sup test (see Example 3.1). It also captures singularity of
stress at the clamped edge without oscillation. On the other hand
raw finite element H8, based on displacement based finite element
method without modification on interpolation functions, exhibits
spurious oscillations of the results. Present element is raw, also.

Let us now investigate the convergence rate of the present
spatially multiscale approach. We will measure the relative
displacement error u of the approximated solution ul in
accordance to the target solution uiT“get, given by

|u;~,7u;l'arget|

Target ‘
i

(13)
lu

Therefore, the logarithmic relative errors per maximal displace-
ments 7 vs. logarithm of the number of finite elements NEL, are
shown in Fig. 11.
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Fig. 10. Bimetallic strip. Distribution of stress.

The convergence results show that finite elements HC8/9 and
HC20/27 have quadratic convergence rate in spatially multiscale
analysis of model problem loaded by thermal loading.

3.6. Bending dominated case

In order to test the convergence rate of the present approach
the model problem in the bending dominated situation [10], a
clamped thin quadratic plate loaded by the transverse uniform
load q=-100, is considered,. The side of a plate is a=2 and

Please cite this article as: D. Mijuca, On a new 3D primal-mixed finite element approach for thermal stress analysis of multi-layered
geometrically multiscale structures, Finite Elem. Anal. Des. (2009), doi:10.1016/j.finel.2009.11.001



dx.doi.org/10.1016/j.finel.2009.11.001

D. Mijuca / Finite Elements in Analysis and Design 1 (1iii) mi-uma 11

thickness h=0.01. Young’s modulus is E=1.7472 x 10’7, and
Poisson’s ratio v = 0.3. Only a quarter of the plate is analyzed due
to its overall symmetry. The sequence of FE HC8/9 regular
N x N x 2, N=4,8,16,32,40,48, and spatially multiscale N x N x
2, N=5,10,20,40,50,60 meshes, are considered. Multiscale
mesh is obtained by placing the thin layer of elements, of
thickness h=1 x 107/N, near the clamped edges. In this case,
maximal aspect ratio is always 2500. Nevertheless, the scale
resolution of the model problem goes up to 1/(8.33 x 107%)=1.2 x
10° for mesh which has N=60 elements per side. This model has
48 x 48 interior finite elements of dimension 1—1 x 107/ 48x
1-1 x 107%/48 x 0.01/2, and 12 x 48 finite elements of dimension
1-1 x1074/48 x 1 x 1074/12 x 0.01/2 per each of clamped edge,
and 12 x 12 corner finite elements 1x 107%/12x 1 x 1074/
12 x 0.01/2. This number of elements should be doubled for second
layer of elements per thickness of the plate. Consequently, this model
problem has 7200 finite elements in total.

The results for deflection u, at the center of the plate, based on
the plate theory assumptions [20] can be written as
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Fig. 11. Bimetallic plate. Relative displacement error.
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Fig. 12. Clamped plate. Relative displacement error.

where up to 10 digits [24]:
c=1.265319087 x 1073, (15)

The logarithmic relative errors (13) of the maximal displace-
ments # vs. logarithm of the number of finite elements, for regular
and spatially multiscale meshes NEL, are shown in Fig. 12.

We can see from Fig. 12, that present finite element HC8/9
approach has almost quadratic convergence rate in regular mesh
analysis. In multiscale analysis it has also almost quadratic
convergence rate. On the other hand, it can be seen that finite
element H8 based on corresponding raw displacement based finite
element method (primal approach) [3] has convergence rate
below 1. The present approach is also raw because of it has no any
modification on interpolation functions.

4. Conclusion

The reliable and time efficient three-dimensional multifield
primal-mixed hexahedral finite element approach in thermoelas-
tic spatially multiscale analysis in multi material solid mechanics,
based on Hellinger-Reissner’s principle, is presented. The geome-
trical scale resolutions up to 8 orders of magnitude and aspect
ratio of finite elements up to 7 orders of magnitude, are
considered. In order to avoid the geometrical invariance error
and to enable introduction of displacement and stress constraints
in an adequate coordinate systems, the underlying finite element
scheme is coordinate independent. It has several essential
contributions in accordance to other finite element approaches.
Firstly, dual variables, stress and heat flux, are solution variable,
also. Secondly, they are also chosen to be from continuous
subspaces of finite element functions, allowing physically natural
approximation over the discontinuity free regions of the solid
body. Thirdly, stress constraints can be introduced as essential
boundary conditions. The dimensional reduction theories, as
beam and plate, are exactly simulated by suppressing correspond-
ing stress tensor components.

Further, the present approach passes second inf-sup test in
spatially multiscale analysis, and it is invariant to high distortion
and aspect ratio of finite elements up to 6 orders of magnitude, and
scale resolution up to 8 orders of magnitude, for compressible and
nearly incompressible materials. Consequently, coated bodies,
layered composites or bodies with some inclusions can be
efficiently analyzed. Namely, aspect ratio of hexahedral finite
elements in the mesh could be up to 6 orders of magnitude, while
they are degenerated to tetrahedron and L like shapes, without
compromising the convergence. In addition, in order to localize
singularity, microsized finite elements can be placed adjacent to the
surfaces of the material discontinuities. It is shown that by rapid
varying of spatial scale over local heterogeneities, the singularity of
stress is captured without oscillation. Therefore, present procedure
is ideal to be bridged with simulation approaches on particle levels.

More, as stress is solution variable, initial stress and/or strain
field is introduced directly, which is used for straightforward
coupling of thermal and mechanical analyses without consistency
error. In addition, nearly incompressible materials are analyzed
without volumetric locking, and there are no spurious oscillations
of results near singularity.

From the number of benchmark tests performed in thermo
mechanically loaded solid bodies, we can see that present
approach provides accurate results for an execution time which
is at least three orders of magnitude faster than earlier reported
results. Further, it is shown that simplified theories, as beam and
plate theories, and primal finite element approaches, can lead to
the substantial underestimation of maximal thermal stresses,
which is already noticed in experimental testing. In addition, the
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preliminary results show that it is unconditionally stable in
approximation over temporal scales and that it requires much
smaller number of time steps than corresponding primal
approach. The detailed report on approximation over temporal
scales will be reported in the next paper.
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