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In the present paper some details of the problem of a posteriori error estimates are reconsidered. It has
been shown that for smoothed solutions, at variance with raw finite element solution, the error in
energy is not equal to the energy in error. As a consequence, it is dubious to speak about
‘superconvergence’ of recovered derivatives. Nevertheless, it has been found that so—called Z—Z error
estimator (error in energy of smoothed with respect to raw finite element solution) is a useful
procedure for estimation of the error of the raw finite element solution, which also can be further
improved.

1. INTRODUCTION

There is a numerical evidence that, at least for four noded isoparametric elements,
any stress recovery procedure is less accurate in strain energy than direct FEA (Finite
Element Analysis). There are two general classes of the stress smoothing procedures [1,2].
If carried out over a whole finite element mesh, the procedure is known as a global
smoothing. Local smoothing is performed at each node or small group of nodes, per
instance by averaging of the stresses from neighbouring elements at a particular common
node.

The main disadvantage of the FE displacement approach (based on the theorem of
minimum potential energy) is that calculated stresses are generally discontinuous at the
element interfaces. It simply means that, instead of the unique value of the stress at the
global node, we have as many different stress values as there are elements connected.
Furthermore, the use of low order elements results in a low order discontinuous
approximation. As a consequence, the stress accuracy changes from point to point within an
element. As an attempt to overcome the problem of interpretation of the results of
numerically discontinuous model of a physically continuous system and improve the overall
stress results, the number of different techniques have been proposed. One of the earliest
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attempts to obtain the smoothed stress picture of the model has been the averaging of the
nodal stresses of all elements connected at a common node. This is a simple and fast
procedure, but numerous examples were reported where cannot be recommended [1].
Nevertheless, from the contemporary point of view it is a classical technique, widely
adopted as a reference procedure in numerical examinations. Next, the procedure called
“consistent conjugate stress calculation” [2] was introduced in 1971. This method “...is
based on the idea of consistent stress approximation and it approximates such stresses
using the notion of a domain influence of the stress intensity at a nodal point”. This is a
global stress smoothing method resulting in a set of linear simultaneous equations having
well conditioned and positive definite matrix.

Some times later, in 1987, Zienkiewicz and Zhu have been shown that ‘smoothing’
procedures and a posteriori error estimation are closely related, and proposed so—called Z—
Z error estimator, based on smoothing procedures.

In the present paper, after a wider analysis of a class of smoothing procedures, we
will reconsider two of classical and typical approaches, simple averaging and L, projection,
and discuss their merits in error estimation and postprocessing fields.

2. PRELIMINARIES

We let 2=R", where n=2 or 3 denote an open bounded Lipschitzian domain
with piecewise smooth boundary 4. In the problems considered here, working in R?

rather than in R* is not really restrictive and extensions are generally straightforward.
Hence we can present our examples in a two—dimensional setting for the sake of simplicity.
The classical equations governing equilibrium of a material body occupying a
region (2 are,
divT+f=0 in€Q,

u=0 on/p, (1

T(Uen=t on/ly,
where T is the symmetric stress tensor while f is the vector of body forces, u denotes a
displacement vector, N a unit exterior normal to a boundary. Furthermore, /7, and /7 are

the Dirichlet and Neumann portions of the boundary 0¢2, and w and t are the displacements
and tractions prescribed on these portions respectively.
The strain—displacement relations and the constitutive equations are

2e(u)=vVu-vuT,

(u 2
T(u=Ce,

where C is the elasticity tensor. We define V' (£2)={v e (H L))" v=0onT; b} Where

H' is, as usual, the space of all functions having square integrable gradients. Then, the
variational formulation of the boundary value problem (1) is

Find u e V'(£2) such that Vv e V' (£2) 3)
a(u,v)=1~(Vv),
where the bilinear form a: V(Q2)xV(2)= R and the linear form ¢:V(2) >R are
given by the following expressions:
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a(u,v) = IQ Ce(u): e(v)de,

4)
f(v):_[g fode+IrtovdF.

Note that a(u,v) =2U (V), twice the strain energy.

3. FINITE ELEMENT MODEL

We next summarize finite element approximations of (4). The domain (2is
covered by finite subdomains (2  over which piecewise continuous polynomial
approximations U, are performed. The suitable finite element space will be defined as

v, :{uh eV (Q2) ‘ uh|K eP, (). V2 < .Q} . (5)
The restrictions of the finite element approximation Uy, to an element €2, belong to the
space PpK of polynomials of degree p, over £2,. The finite element approximation of (3)

obtained in the space V, is characterized by the discrete problem
Findu, €V, (£2)such that Vv, eV, (£2)

a(uy,v,) =0(vy).

(6)

4. ENERGY OF ERROR AND ERROR OF ENERGY

As it has been noted in [3], p. 40, if (3) holds for all v, it holds for every v, in V;,
and substracting (6) the result is

a(u-u,,v,)=0 Vv, eV, (£2), 7
i.e. the error U-u, is orthogonal to ¥, . Equivalently, with respect to the energy inner

product a, U, is the projection of U onto V), . It follows from (7) that a(u,u,) =a(u,,u,),

and the Pythagorean theorem holds: The energy of the error equals the error in the energy,
a(U-u,,u-u,)=a(u,u)—a(u,,u,). ®)

Since the left side is necessarily positive, the strain energy in U, always underestimates the

strain energy in U:
a(u,,u,) < a(u,u). ©)

5. STRESS PROJECTION
Using (2b), a from (4) can be rewritten as
a(u,v) = jg AT(U):T(v)de, (10)

where A=C " is the elastic compliance tensor. Because we know discontinuous stresses
T(u,)=CVu,, (€8))]
it is customary to project these onto some suitably chosen continuous finite element space
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0, :{sh € 0(0Q) ‘ Sig € Py, (), Vi < .Q} (12)

The restrictions of the finite element approximation U, to an element (2 belong to the space
Ppk of polynomials of degree g, over £2, The projection of T, onto Q, is characterized by

the discrete problem

Find T/ € 0, (£2) such that V' S, € 0, (2)

. (13)
a(T, .S, =a(T,.S,).

From (13) it follows that a(ThL ,T,)=a(T,,T,). and again, analogously to (8)
L L L +L
a(T,=T,.T,=-T,)=a(T,,T,)—a(T, . T,), (14)
i.e. the energy of error of the projected ThL with respect to the raw finite element solution T,

equals the error in the energy of these solutions. Furthermore, since the left side (14) is
necessarily positive

L —L
a(Ty, T, ) <a(T,,Tp), (15)
or, as it has been said by Strang and Fix [3] p. 51, °. . . projection cannot increase energy’.
It is also simple to show that in the inner product space O, function closest to a given T, is
always the projection of T, onto Q,. Forany R, € 0, (£2)
L L L L L
a(T,-T,-R,,T,-T,-R)=a(T,-T,,T,-T,")-2a(T,-T,",R,)+a(R,,R,)
If (13) holds, then
L L L L
a(M =T, T,=-T,) <a(M-T," =R, T, -T,"~R,),

or simply
aT,-T,/.T,-T,)= inf a(T,-S,.T,-S,). (16)
She0,
6. ENERGY ERROR AND ENERGY NORM

The error in energy e, can be defined as the difference between the energies of
exact T and approximate P stress fields,

e, =a(T,T)-a(P,P). 17
The appropriate energy (error) norm ||e||  follows from
el =lacT.TY=a(P,P). (18)

Note that (18) is valid for any kind of approximate solution P. It is also convenient to
introduce the notion of the relative energy (error) norm or precision ny of the strain

energy as

,? lell2 19)
Eoammy’

6.1 Finite element energy norm
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In the special case of the finite element solution when P =T, (u, ), note (9),

lell? 5, = a(T,T)—a(T,.T,). (20)
Moreover, due to (8) and (10)
lell3,, = lell> ,, = a(T=T,,T-T,). @1

At this point it should be noted that (21) and (20) are equivalent iff U, is the projection of u
onto ¥, (7) and, at variance with (18), are valid only in this special case. The precision of
the finite element strain energy can be determined from expressions

S < TR -

= 5 77 = .
Torn = .1 BT

(22)

6.2 Energy norm of the smoothed finite element solution

The error in energy of the smoothed finite element solution S, € O, referred to
the original (raw) solution T, (U, ) can be defined as the difference between the energies of
raw T, and smoothed S, solutions,

eps =a(T,,T,)—a(S,.S,). (23)
The corresponding relative error will be

e
Hppg =—25— (24)
a (Th ,Th )
The appropriate energy norm will be given, in the accordance with (18), by
el s =|a(T,.T) - a(s,.S,)| (25)
Consequently, the precision follows from
ﬂihs - |HEhS | (26)

If we consider averaged solution, S, = ThA , the appropriate expressions can be obtained
from (23, 25 etc.) by the simple replacement of S, by T, “_ and/or of indices S by A.

In the special case when S, = ThL is a projection of the raw finite element solution
T, (13), one can write that

lelg g1, = (T, Ty) = a1, 27)
and

lell3,, = a(T,-T,),T,-T)). (28)
The relative energy (error) norm or precision néh 1 of the strain energy as the energy of
error of the projected ThL with respect to the raw finite element solution T, follows from
s el o0,

EhL ~ :
a (Th 5 Th )



6 Mladen Berkovic and Dubravka Mijuca

7. ZIENKIEWICZ-ZHU ERROR ESTIMATOR

On the basis of the exhaustive computational evidence, Zienkiewicz and Zhu [4] concluded
that (28) is numerically close to (20), at least for the low order elements. The motivation and
plausible explanation of this fact has been numerical closeness of the exact T and projected
finite element solution ThL. Moreover, it has been soon recognized that for the error
estimates, global projection procedure is unnecessary, if not contraproductive, and simple
averaging or more or less equivalent local procedures are sufficient [5,6]. Analytical
validation of Z—Z (error estimators based on recovery techniques), based mainly on their
equivalence with residual estimators, is also available [7,8]. Anyhow, Z—Z type error
estimators can be defined by the expression

”e"éfz :a(Th_ Sh aTh_ Sh)a (30)
and the hypothesis of Zienkiewicz and Zhu is that
el =l 31)

Analogously to (29) one can also introduce the notion of the relative value of error
estimator

772 _ ”9";2 (32)
7-7 = )
a (Th »Th )
and the relationship similar to (31):
2 2

Men ®Mz-2 33)
Note that, due to (9), (33) is not only more meaningful, but also more reliable estimate of
error, because ¢ . . ., it would be desirable to overestimate rather than underestimate the
exact error . .. [6].

8. NUMERICAL EXAMPLE

The problem of the rectangular in—plane loaded plate with the prescribed
displacements is borrowed from [9]. Rectangular domain determined by the points (0,0),
(2,0), (2,1) and (0,1) is considered. Modulus of elasticity is £ = 1 and Poisson’s coefficient
v =0. Analytical displacements are given by the relationship:

u=v= x(x—z] (x—ij (x=2)(1+y)+10y (y—%j (y—i] (y=1)(1+x). (34)

3 2 4

Exact strains and stresses are calculated from the expressions of elasticity. For the plate
thickness 1, the total strain energy is 5.29563. From the Fig. 1. it is evident that raw finite
element solution T, is superior over the projected solution T, L, as long as strain energies are
considered. This behavior already should be expected due to the inequality (15). Smoothed
solution obtained by simple averaging of nodal stress values, S, = ThA , Is even worse, as it
should be expected on the basis of (16). Of course, one can ask the question why to make
smoothing at all — if the result (in the strain energy) is always worse than raw finite element
solution. However, the smoothed solutions, although accompanied with a larger overall
(energy) error, have this error more evenly distributed and hence, as a rule, nodal errors of
smoothed derivatives are smaller.
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Fig. 1. Convergence of energy

Afterwards, the smoothed solutions are more ‘user friendly’, because allow a construction
of a better, more realistic, smooth visual model of the stress state for the problem under
consideration.

On the next graph, Fig. 2., the convergence of the error norms for the
aforementioned models is shown. It is evident that, the energy of error of the finite element
solution (20) is equal to the error in energy (21). In this and in subsequent figures the
relative percentage values of energy error norms are shown, (expressed per cent of the
theoretical value of strain energy), i.e. 77 x 100 per cent. However, such equivalence does
not appear when smoothed stress fields are considered, because these fields are not
orthogonal projections of the exact solution onto the finite element subspace. As it should
be expected on the basis of the Fig. 1., the errors of energy ng and 7y, of both the

projected ThL and averaged ThA respectively replacing P in (18), are evidently larger than
the error in energy of the raw finite element solution (21). In contrary, the energies in error
for these solutions, 77z, and 77,5, , both based on

Nags =a(T=S,.T=S,)/a(T.T) (35)
with S, replaced by ThA and ThL respectively, are unexpectedly smaller than 7z, =765y

(22) for the raw finite element solution.

Of course, the question remains why the solution numerically closer to the exact
one, is worse in strain energy? A physical explanation can be that a smoothed solution has
larger error in satisfying the essential equations of a problem (1) and (2) than the finite
element solution. Finally, it is interesting to note that graphs of the type 77554 and ngz; are

often used as proofs of the superiority of various recovery procedures [5,10,11].
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On the Fig. 3., the Z-Z energy error estimators (32) based on averaged and projected stress
fields (in fact, the energies of error of these solutions with respect to the finite element

solution) i.e. nZAf , and 77sz , respectively, are compared with the corresponding errors in
energies 7oz, (29) and 7, , based on (26) with S, replaced by ThA. First of all, it is

interesting to note that néh , and 77; g Practically overlap — because ThL is a projection of
the finite element solution T, onto the continuous finite element space (see (14)). In

contrary, for the averaged solution ThA the energy of error with respect to the raw finite

element solution nZA_ , and the corresponding error in energy 7,,,, are entirely different,
either in the accuracy and in the convergence rate.
Nevertheless, the values of Z—Z error estimators 7 ZAf , and 7]sz ,, for the averaged

and projected solutions respectively are very close. Hence, one can conclude that the
calculation of Z—Z estimators is a robust procedure, not only with respect to the choice of
sampling points [8], but also with respect to the choice of the smoothing procedure.
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Fig. 4. Comparison of Z-Z energy error estimators and raw finite element error

On the Fig. 4. we can see that the relative error of the finite element solution, 77z, or 7,

(22), is extremely well represented by UZA,Z» i.e. by Z-Z error estimator based on the

averaged solution, while Z—Z error estimator based on the on the projected values 7]sz 7

also converges asymptotically to the relative error of the finite element solution. Hence, one
can conclude that, as long as error estimates are our concern, it is sufficient, and can be

. . A .
recommended, to use averaged solutions, i.e. 77,_,, estimator.
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9. CONCLUSIONS

It is presently a common opinion that projected, or even arbitrarily smoothed stress
fields are ‘more accurate’ than raw finite element solution. However, in the present paper it
has been shown, either analytically and numerically, that the strain energy of the projected
(i.e. the best approximate for the given finite element space) solution is necessarily more in
error than that of finite element solution. In this paper also a minor but useful improvement

of Z—Z error estimator is proposed, i.e. the use of its relative 77,_, instead of absolute llell...

value.

A practical recommendation based upon the present paper is that for the error
estimates, and their eventual use for the adaptive remeshing, simple averaging, or eventually
similar local procedures, are sufficient. This conclusion is also in the accordance with the
results of some other researchers [6]. However, global projection is preferable as a
smoothing (postprocessing) procedure, at least in the comparison with simple averaging
[12].
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