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In the present paper some details of the problem of a posteriori error estimates are reconsidered. It has 
been shown that for smoothed solutions, at variance with raw finite element solution, the error in 
energy is not equal to the energy in error. As a consequence, it is dubious to speak about 
‘superconvergence’ of recovered derivatives. Nevertheless, it has been found that so–called Z–Z error 
estimator (error in energy of smoothed with respect to raw finite element solution) is a useful 
procedure for estimation of the error of the raw finite element solution, which also can be further 
improved. 

1.  INTRODUCTION 

There is a numerical evidence that, at least for four noded isoparametric elements, 
any stress recovery procedure is less accurate in strain energy  than direct FEA (Finite 
Element Analysis). There are two general classes of the stress smoothing procedures [1,2]. 
If carried out over a whole finite element mesh, the procedure is known as a global 
smoothing. Local smoothing is performed at each node or small group of nodes, per 
instance by averaging of the stresses from neighbouring elements at a particular common 
node. 

The main disadvantage of the FE displacement approach (based on the theorem of 
minimum potential energy) is that calculated stresses are generally discontinuous at the 
element interfaces. It simply means that, instead of the unique value of the stress at the 
global node, we have as many different stress values as there are elements connected. 
Furthermore, the use of low order elements results in a low order discontinuous 
approximation. As a consequence, the stress accuracy changes from point to point within an 
element. As an attempt to overcome the problem of interpretation of the results of 
numerically discontinuous model of a physically continuous system and improve the overall 
stress results, the number of different techniques have been proposed. One of the earliest 
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attempts to obtain the smoothed stress picture of the model has been the averaging of the 
nodal stresses of all elements connected at a common node. This is a simple and fast 
procedure, but numerous examples were reported where cannot be recommended [1]. 
Nevertheless, from the contemporary point of view it is a classical technique, widely 
adopted as a reference procedure in numerical examinations. Next, the procedure called 
“consistent conjugate stress calculation” [2] was introduced in 1971. This method “...is 
based on the idea of consistent stress approximation and it approximates such stresses 
using the notion of a domain influence of the stress intensity at a nodal point”. This is a 
global stress smoothing method resulting in a set of linear simultaneous equations having 
well conditioned and positive definite matrix. 

Some times later, in 1987, Zienkiewicz and Zhu have been shown that ‘smoothing’ 
procedures and a posteriori  error estimation are closely related, and proposed so–called Z–
Z error estimator, based on smoothing procedures. 

In the present paper, after a wider analysis of a class of smoothing procedures, we 
will reconsider two of classical and typical approaches, simple averaging and L2 projection, 
and discuss their merits in error estimation and postprocessing fields. 

2. PRELIMINARIES 

We let Ω = Rn , where n = 2 or 3 denote an open bounded Lipschitzian domain 
with piecewise smooth boundary ∂Ω . In the problems considered here, working in R2  
rather than in R3 is not really restrictive and extensions are generally straightforward. 
Hence we can present our examples in a two–dimensional setting for the sake of simplicity.  

The classical equations governing equilibrium of a material body occupying a 
region Ω are, 
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where T is the symmetric stress tensor while f is the vector of body forces, u denotes a 
displacement vector, n a unit exterior normal to a boundary. Furthermore, Γ ΓD N and  are 
the Dirichlet and Neumann portions of the boundary ∂Ω , and w and t are the displacements 
and tractions prescribed on these portions respectively.  

The strain–displacement relations and the constitutive equations are 
2e u u u
T u e
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( )  ,
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where C is the elasticity tensor. We define V H n( ) { ( ( )) :   on }DΩ Ω= ∈ =v v1 0 Γ  where 
H1 is, as usual, the space of all functions having square integrable gradients. Then, the 
variational formulation of the boundary value problem (1) is 
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where the bilinear form a V V : ( ) ( )Ω Ω× ⇒ R  and the linear form R→)( : ΩV  are 
given by the following expressions: 
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3. FINITE ELEMENT MODEL 

We next summarize finite element approximations of (4). The domain Ω is 
covered by finite subdomains ΩK  over which piecewise continuous polynomial 
approximations uh are performed. The suitable finite element space will be defined as 

V V= ∈ ∈ ∀ ∈h h K p K KK

⎧⎨ ⎫⎬u u( )   ( ),  Ω Ω Ω ΩP . ⎩ ⎭h  (5) 

The restrictions of the finite element approximation uh to an element Ω  belong to the K
space PpK

 of polynomials of degree pK  over ΩK . The finite element approximation of (3) 
obtained in the space Vh  is characterized by the discrete problem 

)(such that  )( Find hhhh VV vu ∈∀∈ ΩΩ
).(),( hhha vvu =

 (6) 

4. ENERGY OF ERROR AND ERROR OF ENERGY 

As it has been noted in [3], p. 40, if (3) holds for all v, it holds for every in Vh, 
and subs

V ( ),v ∈ Ω  (7) 
i.e. the error 

 vh
tracting (6) the result is 
a h h( , )         u u v− = ∀0 h h

u u− h  is orthogonal to Vh . Eq
is the to

uivalently, with respect to the energy inner 
product a, uh   projection of u on  Vh . It follows from (7) that a ah h h( , ) ( , )u u u u= , 
and the Pyth gorean theorem holds: The en rgy of the error equals the e

a a ah h h h( , ) ( , ) ( , )u u u u u u u u− − =
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Since the left side is necessarily positive, the s

( , ).u u≤  (9)  

5. STRESS PROJECTION 

Using (2b), a from (4) can be rewritten as 

train energy in uh  always underestimates the 
strain energy in u: 

a h h( , )u u a

a( , )  ( ) ( )d ,u v T u T v= ∫ A : Ω
Ω

 (10) 

where A C= −1 is the elastic compliance tensor. Because we know discontinuous stresses  
( )hT u u ,h= ∇C  (11) 

it is customary to project these onto some suitably chosen continuous finite element space  
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Q Q= ∈ ∈ ∀ ∈h h h K p K KK

⎧⎨ ⎫⎬S S( )     ( ),  Ω Ω Ω ΩP  (12⎩ ⎭ ) 

The restrictions of the finite element approximation uh to an element ΩK belong to the space 
PpK

 of polynomials of degree qK  over ΩK  The projection of Th onto Qh is characterized by 
iscrete problem 
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From (13) it follows that h . and again, analogously to (8) 

h
L

h
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i.e. the energy of error of the projected Th
L with respect

h h( , ),T T≤  (15) 
or, as it has been said by Strang 

) such that ( )

( , ) ( , ).

T S

T S T S

h

a ah
L

h h( , ) ( , )T T T T=

a aL
h h

L( , ) = (T T T T T− − ah h h h

 to the raw finite element solution Th  
equals the error in the energy of these solutions. Furthermore, since the left side (14) is 
necessarily positive 

a h
L

h
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and Fix [3] p. 51, ‘. . . projection cannot increase energy’. 
It is also simple to show that in the inner product space Qh function closest to a given Th  is 
always the projection of Th  onto Qh.. For any Rh hQ∈ ( )Ω  
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6. ENERGY ERROR AND ENERGY NORM 

The error in energy 

a L(T T− ah h

a ah h
L

h h
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Sh
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∈

eE  can be defined as the difference between the energies of 
exact T  and approximate P  stress fields, 

e a aE = ( , ) ( , ).T T P−  P (17) 
The appropriate energy (error) norm e E  follows from 

e a aE
2 = ( , ) ( , )T T P P− . (18) 

Note that (18) is valid for any kind of approximate solution P. It is also convenient to 
introduce the notion of the relative energy (error) norm or precision Eη  of the strain 
energy as 

ηE
Ee

a
2

2

=
( , )T T

. (19) 

6.1 Finite element energy norm 
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In the special case of the finite element solution when P T uh h( ) , note (9), =

e a aEh h h0 = ( , ) ( , ).T T T T−  2 (20) 
Moreover, due to (8) and (10) 

e e aEh Eh0= −= (T T
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h h

2 2 −,T T

 i hat (21) an
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d (20) are equivalent iff uh  is the projection of u 
onto Vh (7) and, at variance with (18), are valid only in this special case. The precision of 
the finite element strain energy can be determined from expressions 
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6.2 Energy norm of the smoothed finite element solution 

The error in energy of the smoothed finite element solution Sh hQ∈  referred to 
the origin
raw  a

The corresponding relative error will be 

al (raw) solution T uh h( ) can be defined as the difference between the energies of 
h nd smoothed Sh  solutions, 

e a aEhS h h h h= ( , ) ( , ).T T S S−  (23) 
T
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The appropriate energy norm will be given, in the accordance with (18), by 
e a aEhS h h h h= ( , ) ( , ) .T T S S−  (25) 

Consequently, the precision follows from 

2

η
EhS

HEhs= . (26) 2

If we consider averaged solution, S Th h
A= , the appropriate expressions can be obtained 

Afrom (23, 25 etc.) by the simple repla of Scement h by Th , and/or of indices S by A. 
In the special case when Sh = Th  is a projec n of the raw finite element 

T  (13), one can write that
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7. ZIENKIEWICZ–ZHU ERROR ESTIMATOR 

On the basis of the exhaustive computational evidence, Zienkiewicz and Zhu [4] concluded 
that (28) is numerically close to (20), at least for the low order elements. The motivation and 
plausible explanation of this fact has been numerical closeness of the exact T and projected 
finite element solution T . Moreover, it has been soon recognized that for the error 
estimates, global projection procedure is unnecessary, if not contraproductive, and simple 
averaging or more or less equivalent local procedures are sufficient [5,6]. Analytical 
validation of Z–Z (error estimators based on recovery techniques), based mainly on their 
equivalence with residual estimators, is also available [7,8]. Anyhow, Z–Z type error 
estimators can be defined by the expression 

h
L

e aZ Z h h h h− − −2 = ( , )T S T S , (30) 
and the hypothesis of Zienkiewicz and Zhu  is that 

e eEh Z Z
2 2 .≈ −  (31) 

Analogously to (29) one can also introduce the notion of the relative value of error 
estimator 

ηZ Z
Z Z

h h

e

a−
−=2

2

( , )T T
, (32) 

and the relationship similar to (31): 
η ηEh Z Z

2 2≈ −  (33) 
Note that, due to (9), (33) is not only more meaningful, but also more reliable estimate of 
error, because ‘ . . . , it would be desirable to overestimate rather than underestimate the 
exact error . . .’ [6]. 

8. NUMERICAL EXAMPLE 

The problem of the rectangular in–plane loaded plate with the prescribed 
displacements is borrowed from [9]. Rectangular domain determined by the points (0,0), 
(2,0), (2,1) and (0,1) is considered. Modulus of elasticity is E = 1 and Poisson’s coefficient 
ν = 0. Analytical displacements are given by the relationship: 

( )( ) ( )(u v x x x x y y y y y= = − )x
⎛
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⎟ −
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⎜
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⎝
⎜
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⎠
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⎛

⎝
⎜

⎞

⎠
⎟ − +      

2

3

3

2
2 1 10

1

3

3

4
1 1 . (34) 

Exact strains and stresses are calculated from the expressions of elasticity. For the plate 
thickness 1, the total strain energy is 5.29563. From the Fig. 1. it is evident that raw finite 
element solution T  is superior over the projected solution T , as long as strain energies are 
considered. This behavior already should be expected due to the inequality (15). Smoothed 
solution obtained by simple averaging of nodal stress values, S , is even worse, as it 
should be expected on the basis of (16). Of course, one can ask the question why to make 
smoothing at all – if the result (in the strain energy) is always worse than raw finite element 
solution. However, the smoothed solutions, although accompanied with a larger overall 
(energy) error, have this error more evenly distributed and hence, as a rule, nodal errors of 
smoothed derivatives are smaller. 

h h
L

Th h
A=
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Afterwards, the smoothed solutions are more ‘user friendly’, because allow a construction 
of a better, more realistic, smooth visual model of the stress state for the problem under 
consideration. 

On the next graph, Fig. 2., the convergence of the error norms for the 
aforementioned models is shown. It is evident that, the energy of error of the finite element 
solution (20) is equal to the error in energy (21). In this and in subsequent figures the 
relative percentage values of energy error norms are shown, (expressed per cent of the 
theoretical value of strain energy), i.e. η × 100 per cent. However, such equivalence does 
not appear when smoothed stress fields are considered, because these fields are not 
orthogonal projections of the exact solution onto the finite element subspace. As it should 
be expected on the basis of the Fig. 1., the errors of energy ELη  and EAη  of both the 

projected T  and averaged T  respectively replacing P in (18), are evidently larger than 
the error in energy of the raw finite element solution (21). In contrary, the energies in error 
for these solutions, 

h
L

h
A

REAη  and RELη , both based on 

ηRES h ha2 = − −( , ) / ( ,T T T TS S a ) (35) 

with Sh replaced by T  and T  respectively, are unexpectedly smaller than h
A

h
L

EHEh Oηη =  
(22) for the raw finite element solution. 

Of course, the question remains why the solution numerically closer to the exact 
one, is worse in strain energy? A physical explanation can be that a smoothed solution has 
larger error in satisfying the essential equations of a problem (1) and (2) than the finite 
element solution. Finally, it is interesting to note that graphs of the type REAη  and RELη  are 
often used as proofs of the superiority of various recovery procedures [5,10,11]. 
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On the Fig. 3., the Z–Z energy error estimators (32) based on averaged and projected stress 
fields (in fact, the energies of error of these solutions with respect to the finite element 
solution) i.e. η ηZ Z

A
Z Z
L

− − and  respectively, are compared with the corresponding errors in 
energies EhLOη  (29) and  based on (26) with Sη0EhA h replaced by T . First of all, it is 

interesting to note that  and  practically overlap – because Th  is a projection of 
the finite element solution T  onto the continuous finite element space (see (14)). In 
contrary, for the averaged solution T the energy of  error with respect to the raw finite 
element solution 

h
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ηEhL
2 η0

2
EhL
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ηZ Z
A
−  and the corresponding error in energy  are entirely different, 

either in the accuracy and in the convergence rate. 
η0EhA

Nevertheless, the values of Z–Z error estimators ηZ Z
A
−  and ηZ Z

L
−  for the averaged 

and projected solutions respectively are very close. Hence, one can conclude that the 
calculation of Z–Z estimators is a robust procedure, not only with respect to the choice of 
sampling points [8], but also with respect to the choice of the smoothing procedure. 

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4
-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

-ln h = ln n

-ln η

n=number of elements per side

10

20

30

50

%

e
n
e
r

g
y

e
r
r
o
r

n
o
r
m322824201612 8

Z-Z energy error estimator compared with raw FEA
error
Riggs-Tessler problem

η EhL

η EhA =
η Eh

0.89

0.97

0.96

rate

 
Fig. 4. Comparison of Z–Z energy error estimators and raw finite element error 

On the Fig. 4. we can see that the relative error of the finite element solution,  or  

(22), is extremely well represented by 
ηηOE Ehη

ηZ Z
A
− , i.e. by Z–Z error estimator based on the 

averaged solution, while Z–Z error estimator based on the on the projected values ηZ Z
L
−  

also converges asymptotically to the relative error of the finite element solution. Hence, one 
can conclude that, as long as error estimates are our concern, it is sufficient, and can be 
recommended, to use averaged solutions, i.e. ηZ Z

A
−  estimator. 
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9. CONCLUSIONS 

It is presently a common opinion that projected, or even arbitrarily smoothed stress 
fields are ‘more accurate’ than raw finite element solution. However, in the present paper it 
has been shown, either analytically and numerically, that the strain energy of the projected 
(i.e. the best approximate for the given finite element space) solution is necessarily more in 
error than that of finite element solution. In this paper also a minor but useful improvement 
of Z–Z error estimator is proposed, i.e. the use of its relative  instead of absolute ZZ −η e Z–Z 
value. 

A practical recommendation based upon the present paper is that for the error 
estimates, and their eventual use for the adaptive remeshing, simple averaging, or eventually 
similar local procedures, are sufficient. This conclusion is also in the accordance with the 
results of some other researchers [6]. However, global projection is preferable as a 
smoothing (postprocessing) procedure, at least in the comparison with simple averaging 
[12]. 
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